Home Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
Article
Licensed
Unlicensed Requires Authentication

Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy

  • Sandeep Rajan , Rajni Shukla , Anil Kumar , Anupam Vyas and Ranjeet Brajpuriya EMAIL logo
Published/Copyright: October 27, 2021
Become an author with De Gruyter Brill

Abstract

Investigations regarding structural, morphological, and magnetic changes induced by ball milling of Fe-50 at.% Al alloy have been carried out. The mechanical alloying process induces a progressive dissolution of Al into Fe, resulting in the nucleation and establishment of an elongated nanostructured Fe(Al) solid solution with the bcc structure only after 5 hr of milling. The average crystallite size of components decreased to ~5 nm and the components diffused to the nanograin boundaries during transition to nanostructured composite. Scanning electron microscopy and transmission electron microscopy confirmed the crystallite size determination and Fe(Al) solid solution formation obtained from X-ray diffraction analysis. The corresponding magnetic (Mössbauer and vibration sample magnetometer) studies confirm that there is magnetic behaviour retained in the FeAl alloys samples even after 5 hr of milling but magnetization decreases as the milling time increases. The ball milling process involves the loss of long range order and reduced grain size, which induces a transition from a paramagnetic to ferromagnetic state. The continuous refinement of grains and the antiphase interface grain bounderies play a major part in the observed variation in the magnetic properties.


Dr. Ranjeet Brajpuriya Assistant Professor Department of Physics, Amity University Haryana Manesar Gurgoan, 122413 India Tel.: +91 8527769007

References

[1] A. Hernando, J.M. Gonzalez: Hyperfine Interact. 130 (2000) 221. DOI:10.1023/A:101109652242910.1023/A:1011096522429Search in Google Scholar

[2] R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J.P. Shingledecker, B. Vitalis, U.S. Program on materials technology for ultra supercritical stream coal-fired power plants, Materials for Advanced Power Engineering, Energy Technology 53 (2006) 893.Search in Google Scholar

[3] M. Muller: Energy Materials: Materials Science and Engineering for Energy Systems 1(4) (2006) 223. DOI:10.1179/174892406X17360210.1179/174892406X173602Search in Google Scholar

[4] R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, M.V. Nathal (Eds.): Structural intermetallics, The Minerals, Metals and Materials Society: Warrendale, PA (1993) 127.Search in Google Scholar

[5] C.G. McKamey, J.H. Devan, P.F. Tortorelli, V.K. Sikka: J. Mater. Res. 6 (1991) 695. DOI:10.1557/JMR.1991.177910.1557/JMR.1991.1779Search in Google Scholar

[6] N.S. Stoloff, R.C. Davies: Prog. Mater. Sci. 13 (1966) 1. DOI:10.1016/0079-6425(68)90018-210.1016/0079-6425(68)90018-2Search in Google Scholar

[7] S.C. Deevi, V.K. Sikka: Intermetallics 4 (1996) 357. DOI:10.1016/0966-9795(95)00056-910.1016/0966-9795(95)00056-9Search in Google Scholar

[8] J.S. Kouvel, in: J.H. Westbrook, R.L. Fleischer (Eds.), Intermetallic Compounds: Principles, Wiley, New York 1 (1994) 935.Search in Google Scholar

[9] U.R. Kattner, in: T.B. Massalski (Ed.), Binary Alloy Phase Diagrams, ASM International, Metals Park, OH (1990) 147.Search in Google Scholar

[10] V. Reddy, P. Jenna, S.C. Deevi: Intermetallics 8 (2000) 1197. DOI:10.1016/S0966-9795(00)00075-310.1016/S0966-9795(00)00075-3Search in Google Scholar

[11] C. Lilly, S.C. Deevi, Z.P. Gibbs: Mater. Sci. Eng. 42 (1998) A 258.10.1016/S0921-5093(98)00915-0Search in Google Scholar

[12] E.P. George, M. Yamaguchi, K.S. Kumar, C.T. Liu: Ann. Rev. Mater. Sci. 25 (1994) 409. DOI:10.1146/annurev.ms.24.080194.00220510.1146/annurev.ms.24.080194.002205Search in Google Scholar

[13] S.C. Deevi: Intermetallics 8 (2000) 679. DOI:10.1016/S0966-9795(99)00129-610.1016/S0966-9795(99)00129-6Search in Google Scholar

[14] O. Pocci, O. Tassa, C. Testani, in: Processing, Properties and Application of Iron Aluminides, The Materials, Metals and Minerals Society, PA (1994) 19.Search in Google Scholar

[15] N. Srinivasa, VK. Sikka, in: Processing, Properties and Application of Iron Aluminides, The Materials, Metals and Minerals Society, PA (1994) 69.Search in Google Scholar

[16] H. Gleiter: Prog. Mater. Sci. 33 (1991) 223. DOI:10.1016/0079-6425(89)90001-710.1016/0079-6425(89)90001-7Search in Google Scholar

[17] C.C. Koch: Mater. Sci. Forum 88 (1992) 243.10.4028/www.scientific.net/MSF.88-90.243Search in Google Scholar

[18] R. Bohn, T. Haubold, R. Birringer, H. Gleiter: Scr. Metall. Mater. 25 (1991) 811. DOI:10.1016/0956-716X(91)90230-X10.1016/0956-716X(91)90230-XSearch in Google Scholar

[19] C. Suryanarayana: Prog. Mater. Sci. 46 (2001) 1. DOI:10.1016/S0079-6425(99)00010-910.1016/S0079-6425(99)00010-9Search in Google Scholar

[20] X. Amils, J. Nogués, S. Suriñach, J.S. Muñoz, M.D. Baró, A. Hernando, J.P. Morniroli: Phys. Rev. B 63 (2001) 052402. DOI:10.1103/PhysRevB.63.05240210.1103/PhysRevB.63.052402Search in Google Scholar

[21] L.F. Kiss, D. Kaptás, J. Balogh, L. Bujdosó, T. Kemény, L. Vincze, J. Gubicza: Phys. Rev. B 70 (2004) 012408. DOI:10.1103/PhysRevB.70.01240810.1103/PhysRevB.70.012408Search in Google Scholar

[22] S. Gialanella, X. Amils, M.D. Barò, P. Delcroix, G. Le Caër, L. Lutterotti, S. Suriñach: Acta Mater. 46 (1998) 3305. DOI:10.1016/S1359-6454(97)00484-910.1016/S1359-6454(97)00484-9Search in Google Scholar

[23] S. Gialanella: Intermetallics 3 (1995) 73. DOI:10.1016/0966-9795(94)P3680-M10.1016/0966-9795(94)P3680-MSearch in Google Scholar

[24] G.K. Rane, U. Welzel, S.R. Meka, E.J. Mittemeijer: Acta Mater. 61 (2013) 4524. DOI:10.1016/j.actamat.2013.04.02110.1016/j.actamat.2013.04.021Search in Google Scholar

[25] J. Nogués, E. Apiñaniz, J. Sort, M. Amboage, M. d’Astuto, O. Mathon, R. Puzniak, I. Fita, J.S. Garitaonandia, S. Suriñach, J.S. Muñoz, M.D. Baró, F. Plazaola, F. Baudelet: Phys. Rev. B 74 (2006) 024407. DOI:10.1103/PhysRevB.74.02440710.1103/PhysRevB.74.024407Search in Google Scholar

[26] C. Mangler, C. Gammer, K. Hiebl, H.P. Karnthaler, C. Rentenberger: J. Alloys Compd. 509S (2011) S389-S392. DOI:10.1016/j.jallcom.2010.12.02310.1016/j.jallcom.2010.12.023Search in Google Scholar

[27] S. Takahashi, Y. Umakoshi: J. Phys. Condens. Matter 2 (1990) 4007. DOI:10.1088/0953-8984/2/17/01210.1088/0953-8984/2/17/012Search in Google Scholar

[28] Y. Yang, I. Baker, P. Martin: Philos. Mag. B 79 (1999) 449. DOI:10.1080/0141861990821030910.1080/01418619908210309Search in Google Scholar

[29] O. Kubaschewski: Iron-Binary Phase Diagrams, Spinger-Verlag, Berlin (1982) 5.Search in Google Scholar

[30] R. Koohkan, S. Sharafi, H. Shokrollahi, K. Janghorban: J. Magn. Magn. Mater. 320(6) (2008) 1089. DOI:10.1016/j.jmmm.2007.10.03310.1016/j.jmmm.2007.10.033Search in Google Scholar

[31] E. Jartych, J.K. Zurawicz, D. Oleszak, M. Pekala: Nanostruct. Mater. 12 (1999) 927. DOI:10.1016/S0965-9773(99)00269-X10.1016/S0965-9773(99)00269-XSearch in Google Scholar

[32] W.M. Tang, Z.X. Zheng, H.J. Tang, R. Ren, Y.C. Wu: Intermetallics 15(8) (2007) 1020. DOI:10.1016/j.intermet.2006.12.00510.1016/j.intermet.2006.12.005Search in Google Scholar

[33] R.A. Dunlap, J.R. Dahn, D.A. Eleman, G.R. Mackey: Hyperfine Interact. 116 (1998) 117. DOI:10.1023/A:101268571397010.1023/A:1012685713970Search in Google Scholar

[34] M. Krasnowski, A. Grabias, T. Kulik: J. Alloys Compd. 424 (2006) 119–127. DOI:10.1016/j.jallcom.2005.12.07710.1016/j.jallcom.2005.12.077Search in Google Scholar

[35] R.A. Dunlap, D.A. Small, G.R. Mackey, J.W. O’Brien, J.R. Dahn, Z.H. Cheng: Can. J. Phys. 78(3) (2000) 211–229. DOI:10.1139/p99-06710.1139/p99-067Search in Google Scholar

[36] A.E. Berkowitz, K. Takano: J. Magn. Magn. Mater. 200 (1999) 552. DOI:10.1016/S0304-8853(99)00453-910.1016/S0304-8853(99)00453-9Search in Google Scholar

[37] G. Herzer, in: K.H.J. Buschow (Ed.), Handbook of Magnetic Materials, Elsevier Science B.V., 10 (1997) 415–462.Search in Google Scholar

[38] M.J. Besnus, A. Herr, A.J.P. Meyer: J. Phys. F 5 (1975) 2138. DOI:10.1088/0305-4608/5/11/02610.1088/0305-4608/5/11/026Search in Google Scholar

[39] V. Sundararajan, B.R. Sahu, D.G. Kanhere, P.V. Panat, G.P. Das: J. Phys. Condens. Matter 7 (1995) 6019. DOI:10.1088/0953-8984/7/30/00710.1088/0953-8984/7/30/007Search in Google Scholar

[40] X. Amils, J. Nogues, S. Surinach, M.D. Baro, J.S. Munoz: IEEE Trans. Magn. 34 (1998) 1129. DOI:10.1109/20.70640910.1109/20.706409Search in Google Scholar

[41] A. Hernando, X. Amils, J. Nogues, S. Surinach, M.D. Baro, M.R. Ibarra: Phys. Rev. B 58 (1998) R11864. DOI:10.1103/PhysRevB.58.36610.1103/PhysRevB.58.366Search in Google Scholar

[42] Q. Zeng, I. Baker: Intermetallics 14 (2006) 396. DOI:10.1016/j.intermet.2005.07.00510.1016/j.intermet.2005.07.005Search in Google Scholar

[43] X. Amils, J.S. Garitaonandia, J. Nogues, S. Surinach, F. Plazaola, J.S. Munoz, M.D. Baro: J. Non-Cryst. Solids 287 (2001) 272–276. DOI:10.1016/S0022-3093(01)00586-510.1016/S0022-3093(01)00586-5Search in Google Scholar

[44] K. Raviprasad, K. Chattopadhyay: Philos. Mag. Lett. 65 (1992) 255–259. DOI:10.1080/0950083920820754410.1080/09500839208207544Search in Google Scholar

[45] P.A. Beck: Metall. Trans. 2 (1971) 2015–2024. DOI:10.1007/BF0266275010.1007/BF02662750Search in Google Scholar

Received: 2014-04-07
Accepted: 2014-10-08
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111162/pdf
Scroll to top button