Abstract
Investigations regarding structural, morphological, and magnetic changes induced by ball milling of Fe-50 at.% Al alloy have been carried out. The mechanical alloying process induces a progressive dissolution of Al into Fe, resulting in the nucleation and establishment of an elongated nanostructured Fe(Al) solid solution with the bcc structure only after 5 hr of milling. The average crystallite size of components decreased to ~5 nm and the components diffused to the nanograin boundaries during transition to nanostructured composite. Scanning electron microscopy and transmission electron microscopy confirmed the crystallite size determination and Fe(Al) solid solution formation obtained from X-ray diffraction analysis. The corresponding magnetic (Mössbauer and vibration sample magnetometer) studies confirm that there is magnetic behaviour retained in the FeAl alloys samples even after 5 hr of milling but magnetization decreases as the milling time increases. The ball milling process involves the loss of long range order and reduced grain size, which induces a transition from a paramagnetic to ferromagnetic state. The continuous refinement of grains and the antiphase interface grain bounderies play a major part in the observed variation in the magnetic properties.
References
[1] A. Hernando, J.M. Gonzalez: Hyperfine Interact. 130 (2000) 221. DOI:10.1023/A:101109652242910.1023/A:1011096522429Search in Google Scholar
[2] R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J.P. Shingledecker, B. Vitalis, U.S. Program on materials technology for ultra supercritical stream coal-fired power plants, Materials for Advanced Power Engineering, Energy Technology 53 (2006) 893.Search in Google Scholar
[3] M. Muller: Energy Materials: Materials Science and Engineering for Energy Systems 1(4) (2006) 223. DOI:10.1179/174892406X17360210.1179/174892406X173602Search in Google Scholar
[4] R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, M.V. Nathal (Eds.): Structural intermetallics, The Minerals, Metals and Materials Society: Warrendale, PA (1993) 127.Search in Google Scholar
[5] C.G. McKamey, J.H. Devan, P.F. Tortorelli, V.K. Sikka: J. Mater. Res. 6 (1991) 695. DOI:10.1557/JMR.1991.177910.1557/JMR.1991.1779Search in Google Scholar
[6] N.S. Stoloff, R.C. Davies: Prog. Mater. Sci. 13 (1966) 1. DOI:10.1016/0079-6425(68)90018-210.1016/0079-6425(68)90018-2Search in Google Scholar
[7] S.C. Deevi, V.K. Sikka: Intermetallics 4 (1996) 357. DOI:10.1016/0966-9795(95)00056-910.1016/0966-9795(95)00056-9Search in Google Scholar
[8] J.S. Kouvel, in: J.H. Westbrook, R.L. Fleischer (Eds.), Intermetallic Compounds: Principles, Wiley, New York 1 (1994) 935.Search in Google Scholar
[9] U.R. Kattner, in: T.B. Massalski (Ed.), Binary Alloy Phase Diagrams, ASM International, Metals Park, OH (1990) 147.Search in Google Scholar
[10] V. Reddy, P. Jenna, S.C. Deevi: Intermetallics 8 (2000) 1197. DOI:10.1016/S0966-9795(00)00075-310.1016/S0966-9795(00)00075-3Search in Google Scholar
[11] C. Lilly, S.C. Deevi, Z.P. Gibbs: Mater. Sci. Eng. 42 (1998) A 258.10.1016/S0921-5093(98)00915-0Search in Google Scholar
[12] E.P. George, M. Yamaguchi, K.S. Kumar, C.T. Liu: Ann. Rev. Mater. Sci. 25 (1994) 409. DOI:10.1146/annurev.ms.24.080194.00220510.1146/annurev.ms.24.080194.002205Search in Google Scholar
[13] S.C. Deevi: Intermetallics 8 (2000) 679. DOI:10.1016/S0966-9795(99)00129-610.1016/S0966-9795(99)00129-6Search in Google Scholar
[14] O. Pocci, O. Tassa, C. Testani, in: Processing, Properties and Application of Iron Aluminides, The Materials, Metals and Minerals Society, PA (1994) 19.Search in Google Scholar
[15] N. Srinivasa, VK. Sikka, in: Processing, Properties and Application of Iron Aluminides, The Materials, Metals and Minerals Society, PA (1994) 69.Search in Google Scholar
[16] H. Gleiter: Prog. Mater. Sci. 33 (1991) 223. DOI:10.1016/0079-6425(89)90001-710.1016/0079-6425(89)90001-7Search in Google Scholar
[17] C.C. Koch: Mater. Sci. Forum 88 (1992) 243.10.4028/www.scientific.net/MSF.88-90.243Search in Google Scholar
[18] R. Bohn, T. Haubold, R. Birringer, H. Gleiter: Scr. Metall. Mater. 25 (1991) 811. DOI:10.1016/0956-716X(91)90230-X10.1016/0956-716X(91)90230-XSearch in Google Scholar
[19] C. Suryanarayana: Prog. Mater. Sci. 46 (2001) 1. DOI:10.1016/S0079-6425(99)00010-910.1016/S0079-6425(99)00010-9Search in Google Scholar
[20] X. Amils, J. Nogués, S. Suriñach, J.S. Muñoz, M.D. Baró, A. Hernando, J.P. Morniroli: Phys. Rev. B 63 (2001) 052402. DOI:10.1103/PhysRevB.63.05240210.1103/PhysRevB.63.052402Search in Google Scholar
[21] L.F. Kiss, D. Kaptás, J. Balogh, L. Bujdosó, T. Kemény, L. Vincze, J. Gubicza: Phys. Rev. B 70 (2004) 012408. DOI:10.1103/PhysRevB.70.01240810.1103/PhysRevB.70.012408Search in Google Scholar
[22] S. Gialanella, X. Amils, M.D. Barò, P. Delcroix, G. Le Caër, L. Lutterotti, S. Suriñach: Acta Mater. 46 (1998) 3305. DOI:10.1016/S1359-6454(97)00484-910.1016/S1359-6454(97)00484-9Search in Google Scholar
[23] S. Gialanella: Intermetallics 3 (1995) 73. DOI:10.1016/0966-9795(94)P3680-M10.1016/0966-9795(94)P3680-MSearch in Google Scholar
[24] G.K. Rane, U. Welzel, S.R. Meka, E.J. Mittemeijer: Acta Mater. 61 (2013) 4524. DOI:10.1016/j.actamat.2013.04.02110.1016/j.actamat.2013.04.021Search in Google Scholar
[25] J. Nogués, E. Apiñaniz, J. Sort, M. Amboage, M. d’Astuto, O. Mathon, R. Puzniak, I. Fita, J.S. Garitaonandia, S. Suriñach, J.S. Muñoz, M.D. Baró, F. Plazaola, F. Baudelet: Phys. Rev. B 74 (2006) 024407. DOI:10.1103/PhysRevB.74.02440710.1103/PhysRevB.74.024407Search in Google Scholar
[26] C. Mangler, C. Gammer, K. Hiebl, H.P. Karnthaler, C. Rentenberger: J. Alloys Compd. 509S (2011) S389-S392. DOI:10.1016/j.jallcom.2010.12.02310.1016/j.jallcom.2010.12.023Search in Google Scholar
[27] S. Takahashi, Y. Umakoshi: J. Phys. Condens. Matter 2 (1990) 4007. DOI:10.1088/0953-8984/2/17/01210.1088/0953-8984/2/17/012Search in Google Scholar
[28] Y. Yang, I. Baker, P. Martin: Philos. Mag. B 79 (1999) 449. DOI:10.1080/0141861990821030910.1080/01418619908210309Search in Google Scholar
[29] O. Kubaschewski: Iron-Binary Phase Diagrams, Spinger-Verlag, Berlin (1982) 5.Search in Google Scholar
[30] R. Koohkan, S. Sharafi, H. Shokrollahi, K. Janghorban: J. Magn. Magn. Mater. 320(6) (2008) 1089. DOI:10.1016/j.jmmm.2007.10.03310.1016/j.jmmm.2007.10.033Search in Google Scholar
[31] E. Jartych, J.K. Zurawicz, D. Oleszak, M. Pekala: Nanostruct. Mater. 12 (1999) 927. DOI:10.1016/S0965-9773(99)00269-X10.1016/S0965-9773(99)00269-XSearch in Google Scholar
[32] W.M. Tang, Z.X. Zheng, H.J. Tang, R. Ren, Y.C. Wu: Intermetallics 15(8) (2007) 1020. DOI:10.1016/j.intermet.2006.12.00510.1016/j.intermet.2006.12.005Search in Google Scholar
[33] R.A. Dunlap, J.R. Dahn, D.A. Eleman, G.R. Mackey: Hyperfine Interact. 116 (1998) 117. DOI:10.1023/A:101268571397010.1023/A:1012685713970Search in Google Scholar
[34] M. Krasnowski, A. Grabias, T. Kulik: J. Alloys Compd. 424 (2006) 119–127. DOI:10.1016/j.jallcom.2005.12.07710.1016/j.jallcom.2005.12.077Search in Google Scholar
[35] R.A. Dunlap, D.A. Small, G.R. Mackey, J.W. O’Brien, J.R. Dahn, Z.H. Cheng: Can. J. Phys. 78(3) (2000) 211–229. DOI:10.1139/p99-06710.1139/p99-067Search in Google Scholar
[36] A.E. Berkowitz, K. Takano: J. Magn. Magn. Mater. 200 (1999) 552. DOI:10.1016/S0304-8853(99)00453-910.1016/S0304-8853(99)00453-9Search in Google Scholar
[37] G. Herzer, in: K.H.J. Buschow (Ed.), Handbook of Magnetic Materials, Elsevier Science B.V., 10 (1997) 415–462.Search in Google Scholar
[38] M.J. Besnus, A. Herr, A.J.P. Meyer: J. Phys. F 5 (1975) 2138. DOI:10.1088/0305-4608/5/11/02610.1088/0305-4608/5/11/026Search in Google Scholar
[39] V. Sundararajan, B.R. Sahu, D.G. Kanhere, P.V. Panat, G.P. Das: J. Phys. Condens. Matter 7 (1995) 6019. DOI:10.1088/0953-8984/7/30/00710.1088/0953-8984/7/30/007Search in Google Scholar
[40] X. Amils, J. Nogues, S. Surinach, M.D. Baro, J.S. Munoz: IEEE Trans. Magn. 34 (1998) 1129. DOI:10.1109/20.70640910.1109/20.706409Search in Google Scholar
[41] A. Hernando, X. Amils, J. Nogues, S. Surinach, M.D. Baro, M.R. Ibarra: Phys. Rev. B 58 (1998) R11864. DOI:10.1103/PhysRevB.58.36610.1103/PhysRevB.58.366Search in Google Scholar
[42] Q. Zeng, I. Baker: Intermetallics 14 (2006) 396. DOI:10.1016/j.intermet.2005.07.00510.1016/j.intermet.2005.07.005Search in Google Scholar
[43] X. Amils, J.S. Garitaonandia, J. Nogues, S. Surinach, F. Plazaola, J.S. Munoz, M.D. Baro: J. Non-Cryst. Solids 287 (2001) 272–276. DOI:10.1016/S0022-3093(01)00586-510.1016/S0022-3093(01)00586-5Search in Google Scholar
[44] K. Raviprasad, K. Chattopadhyay: Philos. Mag. Lett. 65 (1992) 255–259. DOI:10.1080/0950083920820754410.1080/09500839208207544Search in Google Scholar
[45] P.A. Beck: Metall. Trans. 2 (1971) 2015–2024. DOI:10.1007/BF0266275010.1007/BF02662750Search in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences