Abstract
Spinel type pure and Sr2+ doped zinc ferrite nanoparticles were prepared by glycine assisted combustion. The resultant nanoparticles were found to be highly crystalline with cubic crystal structure. The structure and the corresponding changes in the tetrahedral and octahedral bond stretching were investigated. The chemical elements and oxidation states of these nanoparticles were determined and the elemental compositions of synthesized nanoparticles established. It was observed that the optical band gap values increased from 2.43 eV to 2.49 eV as Sr2+ concentration increased. The morphology, chemical elements and composition of the prepared ferrites were examined. The magnetic behavior of these nanoferrites was studied and corresponding changes in the saturation magnetization, coercivity and remanent magnetization were analyzed.
References
[1] A.L. Xia, S. Liu, C. Jin, D. Du, J. Hu: Int. J. Mater. Res. 103 (2012) 490. DOI:10.3139/146.11065710.3139/146.110657Search in Google Scholar
[2] N.M. Deraz, S.A. Shaban, A. Alarifi: J. Saudi Chem. Soc. 14 (2010) 357. DOI:10.1016/j.jscs.2010.04.01210.1016/j.jscs.2010.04.012Search in Google Scholar
[3] Z.H. Zhou, J.M. Xue, J. Wang, H.S.O. Chan, T. Yu, Z.X. Shen: J. Appl. Phys. 91 (2002) 6015. DOI:10.1063/1.144752310.1063/1.1447523Search in Google Scholar
[4] G. Zhang, L. Chunsheng, C. Fangyi: Sens. Actuators, B 120 (2007) 403. DOI:10.1016/j.snb.2006.02.03410.1016/j.snb.2006.02.034Search in Google Scholar
[5] G. Lu, S. Li: Int. J. Hydrogen Energy 17 (1992) 767. DOI:10.1016/0360-3199(92)90019-S10.1016/0360-3199(92)90019-SSearch in Google Scholar
[6] S. Zhuiykov, M. Muta, T. Ono, M. Hasei: Electrochem. Solid-State Lett. 4 (2001) 19. DOI:10.1149/1.134653610.1149/1.1346536Search in Google Scholar
[7] J.S. Jang, W. Li, S.H. Oh, J.S. Lee: Chem. Phys. Lett. 425 (2006) 278. DOI:10.1016/j.cplett.2006.05.03110.1016/j.cplett.2006.05.031Search in Google Scholar
[8] L. Yu, X. Yang, L. Wang, H. Yang: Mater. Manuf. Processes 26 (2011) 1383. DOI:10.1080/10426914.2010.54480810.1080/10426914.2010.544808Search in Google Scholar
[9] J. Liu, L. Wang, S. Zhong, Y. Han: Mater. Manuf. Processes 28 (2013) 10. DOI:10.1080/10426914.2012.70016210.1080/10426914.2012.700162Search in Google Scholar
[10] S.K. Pandian, K. Karthik, K.S. Kumar, N.V. Jaya: Mater. Manuf. Processes 27 (2012) 130. DOI:10.1080/10426914.2011.55713010.1080/10426914.2011.557130Search in Google Scholar
[11] R. Ping, Z. Junxi, D. Huiyong: J. of Wuhan University of Technology-Mater. Sci. Ed. 24 (2009) 927. DOI:10.1007/s11595-009-6927-y10.1007/s11595-009-6927-ySearch in Google Scholar
[12] J. Chandradass, M. Balasubramanian: Mater. Manuf. Processes 21 (2006) 319. DOI:10.1080/1042691050046481810.1080/10426910500464818Search in Google Scholar
[13] X. Liu, WL. Gao: Mater. Manuf. Processes 27 (2012) 905. DOI:10.1080/10426914.2011.59325010.1080/10426914.2011.593250Search in Google Scholar
[14] S. Ozcan, B. Kaynar, M.M. Can, T. Fırat: Mater. Sci. Eng. B 121 (2005) 278. DOI:10.1016/j.mseb.2005.04.00610.1016/j.mseb.2005.04.006Search in Google Scholar
[15] R.S. Turtelli, M. Atif, J. Krippel, R. Grossinger, F. Kubel, W. Linert: Int. J. Mater. Res. 103 (2012) 1163. DOI:10.3139/146.11079110.3139/146.110791Search in Google Scholar
[16] P. Hu, D. Pan, X. Wang, J. Tian, J. Wang, S. Zhang, A. Volinsky: J. Magn. Magn. Mater. 323 (2011) 569. DOI:10.1016/j.jmmm.2010.08.04010.1016/j.jmmm.2010.08.040Search in Google Scholar
[17] E.J. Mittemeijer, U. Welzel: Z. Kristallogr. 223 (2008) 552. DOI:10.1524/zkri.2008.121310.1524/zkri.2008.1213Search in Google Scholar
[18] N.K. Prasad, A. Naulakha, N. Jha, S.S. Meena, D. Bahadur, O. Prakash, R.K. Mandal: Int. J. Mater. Res. 104 (2013) 680. DOI:10.3139/146.11090910.3139/146.110909Search in Google Scholar
[19] Q. Xing, Z. Peng, C.B. Wanga, Z. Fu, X. Fu: Physica B 407 (2012) 388. DOI:10.1016/j.physb.2011.11.00310.1016/j.physb.2011.11.003Search in Google Scholar
[20] M. Ishaque, M.U. Islam, M. Azhar Khan, I.Z. Rahman, A. Genson, S. Hampshire: Physica B 405 (2010) 1532. DOI:10.1016/j.physb.2009.12.03510.1016/j.physb.2009.12.035Search in Google Scholar
[21] T. Tsutaoka: J. Appl. Phys. 93 (2003) 2789. DOI:10.1063/1.154265110.1063/1.1542651Search in Google Scholar
[22] K. Mohit, S.K. Rout, S. Parida, G.P. Singh, S.K. Sharma, S.K. Pradhan, I.W. Kim: Physica B 407 (2012) 935. DOI:10.1016/j.physb.2011.12.00310.1016/j.physb.2011.12.003Search in Google Scholar
[23] M. George, A.M. John, S.S. Nair, P.A. Joy, M.R. Anantharaman: J. Magn. Magn. Mater. 302 (2006) 190. DOI:10.1016/j.jmmm.2005.08.02910.1016/j.jmmm.2005.08.029Search in Google Scholar
[24] S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, K.M. Jadhav: J. Appl. Phys. 106 (2009) 023914. DOI:10.1063/1.317650410.1063/1.3176504Search in Google Scholar
[25] M.A. Gabal: J. Magn. Magn. Mater. 321 (2009) 3144. DOI:10.1016/j.jmmm.2009.05.04710.1016/j.jmmm.2009.05.047Search in Google Scholar
[26] B.K. Labde, M.C. Sable, N.R. Shamkwar: Mater. Lett. 57 (2003) 1651. DOI:10.1016/S0167-577X(02)01046-710.1016/S0167-577X(02)01046-7Search in Google Scholar
[27] C. Prakash, J.S. Baijal: Solid State Commun. 50 (1984) 557. DOI:10.1016/0038-1098(84)90329-610.1016/0038-1098(84)90329-6Search in Google Scholar
[28] P. Priyadharsini, A. Pradeep, P. Sambasiva Rao, G. Chandrasekaran: Mater. Chem. Phys. 116 (2009) 207. DOI:10.1016/j.matchemphys.2009.03.01110.1016/j.matchemphys.2009.03.011Search in Google Scholar
[29] P. Feng, G. Ying, C.F. Feng, F. Tao, Y.S. De: Chin. Phys. B 20 (2011) 127501. DOI:10.1088/1674-1056/20/1/01010110.1088/1674-1056/20/1/010101Search in Google Scholar
[30] L. Liu, G. Zhang, L. Wang, T. Huang, L. Qin: Ind. Eng. Chem. Res. 50 (2011) 7219. DOI:10.1021/ie100884410.1021/ie1008844Search in Google Scholar
[31] A. Miyakoshi, A. Ueno, M. Ichikawa: Appl. Catal., A 219 (2001) 249. DOI:10.1016/S0926-860X(01)00697-410.1016/S0926-860X(01)00697-4Search in Google Scholar
[32] F. Tihay, G. Pourroy, M. Richard-Plouet, A.C. Roger, A. Kiennemann: Appl. Catal., A 206 (2001) 29. DOI:10.1016/S0926-860X(00)00595-010.1016/S0926-860X(00)00595-0Search in Google Scholar
[33] V.V. Atuchin, J.C. Grivel, Z. Zhang: Chem. Phys. 360 (2009) 74. DOI:10.1016/j.chemphys.2009.04.01010.1016/j.chemphys.2009.04.010Search in Google Scholar
[34] M.I. Sosulnikov, Y.A. Teterin: J. Electron Spectrosc. Relat. Phenom. 59 (1992) 111. DOI:10.1016/0368-2048(92)85002-O10.1016/0368-2048(92)85002-OSearch in Google Scholar
[35] M.P. de Jong, V.A. Dediu, C. Taliani, W.R. Salaneck: J. Appl. Phys. 94 (2003) 7292. DOI:10.1063/1.162508110.1063/1.1625081Search in Google Scholar
[36] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben: Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Minnesota (1992).Search in Google Scholar
[37] K. Morito, T. Suzuki, H. Kishi, I. Sakaguchi, N. Ohashi, H. Haneda: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54 (2007) 2567. DOI:10.1109/TUFFC.2007.57810.1109/TUFFC.2007.578Search in Google Scholar
[38] J.D. Baniecki, M. Ishii, T. Shioga, K. Kurihara, S. Miyahara: Appl. Phys. Lett. 89 (2006) 162908. DOI:10.1063/1.235788010.1063/1.2357880Search in Google Scholar
[39] M.W. Roberts, P.R. Wood: J. Electron Spectrosc. Relat. Phenom. 11 (1977) 431. DOI:10.1016/0368-2048(77)80018-210.1016/0368-2048(77)80018-2Search in Google Scholar
[40] K. Villa, A. Black, X. Domenech, J. Peral: Sol. Energy 86 (2012) 558. DOI:10.1016/j.solener.2011.10.02910.1016/j.solener.2011.10.029Search in Google Scholar
[41] R. Tholkappiyan, K. Vishista: Physica B 448 (2014) 177. DOI:10.1016/j.physb.2014.04.02210.1016/j.physb.2014.04.022Search in Google Scholar
[42] D. Gao, Z. Shi, Y. Xu, J. Zhang, G. Yang, J. Zhang, X. Wang, D. Xue: Nanoscale Res. Lett. 5 (2010) 1289. DOI:10.1007/s11671-009-9433-410.1007/s11671-009-9433-4Search in Google Scholar PubMed PubMed Central
[43] G.P. Joshi, N.S. Saxena, R. Mangal, A. Mishra: Bull. Mater. Sci. 26 (2003) 387. DOI:10.1007/BF0271118110.1007/BF02711181Search in Google Scholar
[44] N. Kumar, G. Khurana, A. Gaur, R.K. Kotnala: Mater. Chem. Phys. 134 (2012) 783. DOI:10.1016/j.matchemphys.2012.03.01310.1016/j.matchemphys.2012.03.013Search in Google Scholar
[45] Y. Koseoglu, A. Baykal, M.S. Toprak, F. Gozuak: J. Alloys Compd. 25 (2008) 209. DOI:10.1016/j.jallcom.2007.07.12110.1016/j.jallcom.2007.07.121Search in Google Scholar
[46] S. Chikazumi: Physics of Magnetism, Wiley, New York (1959).Search in Google Scholar
[47] A. Yan, X. Liu, R. Yi: J. Phys. Chem. C 112 (2008) 8558. DOI:10.1021/jp711039s10.1021/jp711039sSearch in Google Scholar
[48] B. Aslibeiki, P. Kameli, H. Salamati, M. Eshraghi, T. Tahmasebi: J. Magn. Magn. Mater. 322 (2010) 2929. DOI:10.1016/j.jmmm.2010.05.00710.1016/j.jmmm.2010.05.007Search in Google Scholar
[49] M.K. Roy, B. Haldar, H.C. Verma: Nanotechnol. 17 (2006) 232. DOI:10.1088/0957-4484/17/1/03910.1088/0957-4484/17/1/039Search in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences