Abstract
Isothermal quenching methods were applied to high boron steel for improving the impact toughness and wear resistance. The effect of different heat treatment processes on the microstructure and mechanical properties was studied. Each of the specimens was characterized using metallographic techniques, scanning electronic microscope, energy dispersive spectroscopy, X-ray diffraction, toughness and hardness testing. The results indicate that the as-cast high boron steel consists of pearlite matrix and eutectic boride M2B and Fe3(C, B) type distributing along grain boundaries. After isothermal quenching, the matrix of high boron steel is changed from pearlite to martensite and lower bainite. The impact toughness and wear resistance of high boron steel after isothermal quenching are better than that of high boron steel after water quenching.
References
[1] Y.X. Li, Z.L. Liu, X. Chen: Int. J. Cast. Met. Res. 21 (2008) 67. DOI:10.1179/136404608X36168410.1179/136404608X361684Search in Google Scholar
[2] J.A. Jiménez, G. González-Doncel, O.A. Ruano: Adv. Mater. 7 (1995) 130. DOI:10.1002/adma.1995007020510.1002/adma.19950070205Search in Google Scholar
[3] P. Acosta, J.A. Jiménez, G. Frommeyer, O.A. Ruano: Mater. Sci. Eng. A 206 (1996) 194. DOI:10.1016/0921-5093(95)10001-610.1016/0921-5093(95)10001-6Search in Google Scholar
[4] M. Bastürk, N. Kardjilov, E. Lehmann, M. Zawisky: IEEE T. Nucl. Sci. 52 (2005) 394. DOI:10.1109/TNS.2005.84363810.1109/TNS.2005.843638Search in Google Scholar
[5] S.Q. Xu, M. Bourham, A. Rabiei: Mater. Des. 31 (2010) 2140. DOI:10.1016/j.matdes.2009.11.01110.1016/j.matdes.2009.11.011Search in Google Scholar
[6] W.F. Yang, Y. Liu, D.A. Li, L. Yang: Powder Metall. 50 (2007) 153. DOI:10.1179/174329007X16199110.1179/174329007X161991Search in Google Scholar
[7] D.T. Llewellyn: Ironmak. Steelmak. 20 (1993) 338.Search in Google Scholar
[8] K.A. Taylor, S.S. Hansen: Metall. Trans. A 21 (1990) 1706. DOI:10.1007/BF0267258610.1007/BF02672586Search in Google Scholar
[9] X.M. Wang, X.L. He: ISIJ Int. 42 (2002) 38. DOI:10.2355/isijinternational.42.138610.2355/isijinternational.42.1386Search in Google Scholar
[10] Z.L. Liu, X. Chen: J. Iron Steel Res. Int. 16 (2009) 37. DOI:10.1016/S1006-706X(09)60041-810.1016/S1006-706X(09)60041-8Search in Google Scholar
[11] The First Steel Works of Benxi Steel Corporation: Boron Steel, Metallurgical Industry Press, Beijing (1977).Search in Google Scholar
[12] H.G. Fu: Cast. Technol. 27 (2006) 87.Search in Google Scholar
[13] H. Zhang, H. Fu, Y. Jiang: Materialwiss. Werkst. 42 (2011) 765. DOI:10.1002/mawe.20110063310.1002/mawe.201100633Search in Google Scholar
[14] Y. Liu, B.H. Li: Mater. Lett. 64 (2010) 1299. DOI:10.1016/j.matlet.2009.10.01110.1016/j.matlet.2009.10.011Search in Google Scholar
[15] H.K.D.H. Bhadeshia: Acta Metall. 29 (1981) 1117. DOI:10.1016/0001-6160(81)90063-810.1016/0001-6160(81)90063-8Search in Google Scholar
[16] H.K.D.H. Bhadeshia: Metal. Sci. 15 (1981) 178. DOI:10.1179/03063458179042669710.1179/030634581790426697Search in Google Scholar
[17] L.A. Dobrzánski, J. Trzaska: J. Mater. Process. Technol. 156 (2004) 1950. DOI:10.1016/j.jmatprotec.2004.04.05610.1016/j.jmatprotec.2004.04.056Search in Google Scholar
[18] Q. Ma, C.C. Wang: Wear 209 (1997) 308. DOI:10.1016/S0043-1648(96)07345-010.1016/S0043-1648(96)07345-0Search in Google Scholar
[19] X. Chen, Y.X. Li: Mater. Sci. Eng. A 528 (2010) 770. DOI:10.1016/j.msea.2010.09.09210.1016/j.msea.2010.09.092Search in Google Scholar
[20] H.K. Zeytin: J. Iron Steel Res. Int. 18 (2011) 31. DOI:10.1016/S1006-706X(11)60007-110.1016/S1006-706X(11)60007-1Search in Google Scholar
[21] P.P. Suikkanen, C. Cayron: J. Mater. Sci. Technol. 29 (2013) 359. DOI:10.1016/j.jmst.2013.01.01510.1016/j.jmst.2013.01.015Search in Google Scholar
[22] S. Sankaran, V.S. Sarma, K. Padmanabhan: Mater. Sci. Eng. A 345 (2003) 328. DOI:10.1016/S0921-5093(02)00511-710.1016/S0921-5093(02)00511-7Search in Google Scholar
[23] S. Sankaran, V.S. Sarma, K. Padmanabhan: Scr. Mater. 49 (2003) 503. DOI:10.1016/S1359-6462(03)00363-410.1016/S1359-6462(03)00363-4Search in Google Scholar
[24] M. Sanctis, G.F. Lovicu: 42th MNSP Conf. Proc. ISS. Italy 37 (2000) 615.Search in Google Scholar
[25] A. Sundström, J. Rendón, M. Olsson: Wear 250 (2001) 744. DOI:10.1016/S0043-1648(01)00712-810.1016/S0043-1648(01)00712-8Search in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences