Startseite Research trends in microwave dielectrics and factors affecting their properties: A review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Research trends in microwave dielectrics and factors affecting their properties: A review

  • Raz Muhammad , Yaseen Iqbal , Carlos Renato Rambo und Hidayatullah Khan
Veröffentlicht/Copyright: 8. Mai 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ceramists are constantly looking for materials to be used as dielectric resonators in the telecommunication industry. These applications require materials with ∊r ∼ 4 – 120, Q × f0 > 10 000 GHz and τf ∼ 0 ppm K−1. Additionally, efforts are also underway to lower the sintering temperatures (e. g. ≤ 800 °C) to reduce processing and electrode costs. The simultaneous achievement of all the three properties mentioned above is difficult; nevertheless, some materials have been synthesized fulfilling the criteria for microwave applications. This study is an overview of various studies on materials for possible applications as microwave dielectrics and factors affecting their microwave properties. These factors include crystal structure, defects, fabrication route, and the type and concentration of substituents and additives.


* Correspondence address, Raz Muhammad, Materials Research Laboratory, Institute of Physics and Electronics, University of Peshawar, Peshawar 25120, Pakistan, Tel.: +92-91-5611212, Fax: +92-91-921-6473, E-mail:

References

[1] S.B.Narang, S.Bahel: J. Ceram. Process. Res.11 (2010) 316.Suche in Google Scholar

[2] M.T.Sebastian: Dielectric Materials for Wireless Communication, Elsevier (2008) 150.Suche in Google Scholar

[3] J.Laskar, S.Chakraborty, M.Tentzeris, F.Bein, A.Pham, Advanced Integrated Communication Microsystems, John Wiley & Sons Ltd (2009) 8. 10.1002/9780470409794Suche in Google Scholar

[4] H.Meier, T.Baier, G.Riha: IEEE Trans. Microw. Theory Tech.49 (2001) 743. 10.1109/22.915458Suche in Google Scholar

[5] H.Ohsato: Ceram. Int.38S (2012) S141. 10.1016/j.ceramint.2011.04.068Suche in Google Scholar

[6] H.Sreemoolanadhan, M.T.Sebastian, P.Mohanan: Mater. Res. Bull.30 (1995) 653. 10.1016/0025-5408(95)00070-4Suche in Google Scholar

[7] F.J.Ubic: Processing and analysis of microwave dielectric resonators in the system BaO.Nd2O3.TiO2, Ph.D thesis, Department of Materials Science and Engineering, University of Sheffield, UK (1997).Suche in Google Scholar

[8] H.Ohsato, T.Tsunooka, T.Sugiyama, K.Kakimoto, H.Ogawa: J. Electroceram. 17 (2006) 445. 10.1007/s10832-006-0452-6Suche in Google Scholar

[9] Q.Zeng, W.Li, J.Shi, J.Guo, M.Zuo, W.Wu: J. Am. Ceram. Soc.89 (2006) 1733. 10.1111/j.1551-2916.2005.00754.xSuche in Google Scholar

[10] I.M.Reaney, R.Ubic: Ferroelectrics228 (1999) 23. 10.1080/00150199908226123Suche in Google Scholar

[11] R.H.Mitchell: Perovskites: Modern and Ancient, Almaz Press (2002).Suche in Google Scholar

[12] I.M.Reaney, E.L.Colla, N.Setter: Jpn. J. Appl. Phys.33 (1994) 3984. 10.1143/JJAP.33.3984Suche in Google Scholar

[13] P.L.Wise, I.M.Reaney, W.E.Lee, T.J.Price, D.M.Iddles, D.S.Cannell: J. Eur. Ceram. Soc.21 (2001) 1723. 10.1016/S0955-2219(01)00102-9Suche in Google Scholar

[14] I.M.Reaney, D.Iddles: J. Am. Ceram. Soc.89 (2006) 2063.Suche in Google Scholar

[15] E.L.Colla, I.M.Reaney, N.Setter: J. Appl. Phys.74 (1993) 3414. 10.1063/1.354569Suche in Google Scholar

[16] V.L.Gurevich, A.K.Tagantsev: Adv. Phys.40 (1991) 719. 10.1080/00018739100101552Suche in Google Scholar

[17] V.M.Ferreira, J.L.Baptista, S.Kamba, J.Petzelt: J. Mater. Sci.28 (1993) 5894. 10.1007/BF00365198Suche in Google Scholar

[18] R.D.Richtmyer: J. Appl. Phys.10 (1939) 391. 10.1063/1.1707320Suche in Google Scholar

[19] A.Templeton, X.Wang, S.J.Penn, S.J.Webb, L.F.Cohen, N.M.Alford: J. Am. Ceram. Soc.83 (2000) 95. 10.1111/j.1151-2916.2000.tb01154.xSuche in Google Scholar

[20] D.J.Masee, R.A.Purcel, D.W.Readey: Proceedings of the IEEE59 (1971) 1628. 10.1109/PROC.1971.8508Suche in Google Scholar

[21] H.Ohsato: J. Ceram. Soc. Jap.11 (2005) 703. 10.2109/jcersj.113.703Suche in Google Scholar

[22] R.Ubic: J. Pak. Mater. Soc.4 (2010) 2.Suche in Google Scholar

[23] Y.Higuchi, H.Tumara: J. Eur. Ceram. Soc.23 (2003) 2683. 10.1016/S0955-2219(03)00193-6Suche in Google Scholar

[24] N.Kukutsu, A.Hirata, M.Yaita, K.Ajito, H.Takahashi, T.Kosugi, H.J.Song, A.Wakatsuki, Y.Muramoto, T.Nagatsuma, Y.Kado: IEEE MTT-S International (2010) 1134.Suche in Google Scholar

[25] Y.Guo, H.Ohsato, K.Kakimoto: J. Eur. Ceram. Soc.26 (2006) 1827. 10.1016/j.jeurceramsoc.2005.09.008Suche in Google Scholar

[26] Y.Ohishi, Y.Miyauchi, K.Kakimoto, H.Ohsato: Ferroelectrics327 (2005) 27. 10.1080/00150190500315384Suche in Google Scholar

[27] R.M.Adams: Structure-composition-property Relations in B-site Deficient Hexagonal Perovskite Systems, Ph.D thesis, The Department of Chemical and Biological Sciences, University of Huddersfield UK (2010).Suche in Google Scholar

[28] H.T.Yu, Y.D.Dai, M.J.Hu, D.B.Luo, M.H.Cao, H.X.Liu: Ferroelectrics356 (2007).Suche in Google Scholar

[29] Y.Iqbal, A.Manan: J. Mater. Sci: Mater. Electron.23 (2012) 536. 10.1007/s10854-011-0432-8Suche in Google Scholar

[30] H.Ohsato: J. Eur. Ceram. Soc.21 (2001) 2703. 10.1016/S0955-2219(01)00349-1Suche in Google Scholar

[31] M.Valant, D.Suvorov: J. Am. Ceram. Soc.86 (2003) 939. 10.1111/j.1151-2916.2003.tb03401.xSuche in Google Scholar

[32] H.Y.Park, C.W.Ahn, H.C.Song, J.H.Lee, S.Nahm, K.Uchino, H.G.Lee, H.J.Lee: Appl. Phys. Lett.89 (2006) 62906. 10.1063/1.2335816Suche in Google Scholar

[33] R.D.Shannon: Acta Cryst. A32 (1976) 751. 10.1107/S0567739476001551Suche in Google Scholar

[34] E.S.Kim, B.S.Chun, R.Freer, R.J.Cernik: J. Eur. Ceram. Soc.30 (2010) 1731. 10.1016/j.jeurceramsoc.2009.04.028Suche in Google Scholar

[35] S.Hirahara, N.Fujikawa, S.Enami, T.Noshi: U.S. Pat. No. 5356844 (1994).Suche in Google Scholar

[36] B.Jancar, D.Suvorov, M.Valant, G.Drazic: J. Eur. Ceram. Soc.22 (2003).Suche in Google Scholar

[37] S.Murakawa: Jpn. Pat. No. 9843924 (1998).Suche in Google Scholar

[38] T.Negas, G.Yeager, S.Bell, N.Coates, I.Minis: Am. Ceram. Soc. Bull.72 (1993) 80.Suche in Google Scholar

[39] F.Roulland, R.Terras, S.Marinel: Mater. Sci. Eng. B.104 (2003) 156. 10.1016/S0921-5107(03)00189-2Suche in Google Scholar

[40] R.C.Pullar, S.J.Penn, S.Wang, I.M.Reaney, N.M.Alford: J. Eur. Ceram. Soc.29 (2009) 419. 10.1016/j.jeurceramsoc.2008.06.019Suche in Google Scholar

[41] H.U.Khan, Phase transition in Li-dopped Ag(NbxTa1-x)O3 perovskite ceramics, Ph.D thesis, Department of Materials Science and Engineering, University of Sheffield, UK (2011).Suche in Google Scholar

[42] P.K.Davies: Curr. Opin. Solid State Mater. Sci.4 (1999) 467. 10.1016/S1359-0286(00)00002-4Suche in Google Scholar

[43] F.Azough, C.Leach, R.Freer: J. Eur. Ceram. Soc.26 (2006) 2877. 10.1016/j.jeurceramsoc.2005.09.016Suche in Google Scholar

[44] D.Barber, K.Moulding, J.Zhou, M.Li: J. Mater. Sci.32 (1997) 1531. 10.1023/A:1018574505601Suche in Google Scholar

[45] R.Tarvin, P.K.Davies: J. Am. Ceram. Soc.87 (2004) 859. 10.1111/j.1551-2916.2004.00859.xSuche in Google Scholar

[46] J.J.Bian, K.Yan: J. Electroceram.21 (2008) 132. 10.1007/s10832-007-9089-3Suche in Google Scholar

[47] I.Kagomiya, Y.Yamada, K.Kakimoto, H.Ohsato: IEEE Trans.55 (2008) 2582. DOI. 10.1109/TUFFC.2008.97.Suche in Google Scholar

[48] K.Matsumoto, T.Hiuga, K.Takada, H.Ichimura: Proc. 6th IEEE Int. Symp of Appl. of Ferroelectrics (1986) 118.Suche in Google Scholar

[49] B.Jancar, D.Suvorov, M.Valant: J. Mater. Sci. Lett.20 (2001) 71. 10.1023/A:1006775001070Suche in Google Scholar

[50] R.Freer, F.Azough: J. Eur. Ceram. Soc.28 (2008) 1433. 10.1016/j.jeurceramsoc.2007.12.005Suche in Google Scholar

[51] S.J.Penn, N.M.Alford, A.Templeton, X.Wang, M.Xu, M.Reece, K.Schrapel: J. Am. Ceram. Soc.80 (1997) 1885. 10.1111/j.1151-2916.1997.tb03066.xSuche in Google Scholar

[52] E.S.Kim, K.H.Yoon: J. Mater. Sci.29 (1994) 830. 10.1007/BF00446000Suche in Google Scholar

[53] S.Kucheiko, H.J.Kim, S.J.Yoon, H.J.Jung: Jpn. J. Appl. Phys.36 (1997) 198. 10.1143/JJAP.36.198Suche in Google Scholar

[54] D.M.Iddles, A.J.Bell, A.J.Moulson: J. Mater. Sci.27 (1992) 6303. 10.1007/BF00576276Suche in Google Scholar

[55] H.Ohsato: J. Eur. Ceram. Soc.27 (2007) 2911. 10.1016/j.jeurceramsoc.2006.11.044Suche in Google Scholar

[56] Y.Tohdo, K.Kakimoto, H.Ohsato, H.Yamada, T.Okawa: J. Eur. Ceram. Soc.26 (2006) 2039. 10.1016/j.jeurceramsoc.2005.09.098Suche in Google Scholar

Received: 2013-04-14
Accepted: 2013-11-26
Published Online: 2014-05-08
Published in Print: 2014-05-13

© 2014, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Review
  4. Research trends in microwave dielectrics and factors affecting their properties: A review
  5. Original Contributions
  6. Efficiency and work performance of TiNi alloy undergoing B2 ↔ R martensitic transformation
  7. Fabrication of Gasar made from Cu-24 wt.% Mn alloy
  8. Effect of intermediate frequency electromagnetic field on the solidification structure and mechanical properties of direct chill cast Al-8 wt.%Si alloy
  9. Effect of Ni-based conversion coating and Ni–P electroless plating on the bonding process of pure Al and AZ31 alloy
  10. Effect of ball milling time on the synthesis of nanocrystalline merwinite via mechanical activation and heat treatment
  11. Structural and magnetic properties of Fe–Al2O3 soft magnetic composites prepared using the sol–gel method
  12. Improved dielectric performance of barium strontium titanate multilayered capacitor by means of pulsed laser deposition and slow injection sol–gel methods
  13. Effect of heat treatment on the slurry erosion resistance of high strength steel DP980
  14. Development of biomimetic gelatin–chitosan/hydroxyapatite nanocomposite via double diffusion method for biomedical applications
  15. Short Communications
  16. Effects of rolling rate on microstructure and mechanical properties of Mg sheets
  17. Effect of post-weld heat treatment on dissimilar friction stir welded AA6063 and A319 aluminium alloys
  18. Dielectric and magnetic properties of Ba0.8Sr0.2TiO3 – Y3Fe5O12 – YFeO3 composites
  19. Microwave-assisted modulated synthesis of zirconium-based metal–organic framework (Zr-MOF) for hydrogen storage applications
  20. DGM News
  21. DGM News
Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111044/html?lang=de
Button zum nach oben scrollen