Startseite A one-pot synthesis of Ag/α-Fe2O3 nanoplates with gelatin and their photocatalytic activity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A one-pot synthesis of Ag/α-Fe2O3 nanoplates with gelatin and their photocatalytic activity

  • Danhui Zhang und Houbo Yang
Veröffentlicht/Copyright: 5. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ag/α-Fe2O3 nanoplates with a size range of 40–60 nm were fabricated by means of a facile gelatin assisted hydrothermal technique. The samples were characterized using X-ray diffraction, transmission electron microscopy, and UV-vis spectroscopy. The results demonstrate that these composites consist of silver and hematite (α-Fe2O3) and the band gap of the Ag/α-Fe2O3 composite is much narrower than for the pure α-Fe2O3. Furthermore, the photocatalysis test shows that the Ag/α-Fe2O3 composite exhibits a higher photocatalytic activity than the pure α-Fe2O3 nanoplates, thereby implying that the Ag/α-Fe2O3 interfaces promote the separation of photogenerated electron–hole pairs and enhance the photocatalytic activity.


* Correspondence address, Dr. Danhui Zhang, Linyi University, Shuangling Street, Linyi 276005, China, Tel.: +86 539 8766260, Fax: +86 539 8766260, E-mail:

References

[1] L.P.Zhu, H.M.Xiao, S.Y.Fu: Cryst. Grow. Des.7 (2007) 177. 10.1021/cg060454tSuche in Google Scholar

[2] D.Li, J.T.McCann, Y.N.Xia: Small1 (2005) 83. 10.1002/smll.200400056Suche in Google Scholar PubMed

[3] B.Liu, H.C.Zeng: J. Am. Chem. Soc.126 (2004) 8124. 10.1021/ja048195oSuche in Google Scholar PubMed

[4] K.S.Cho, D.V.Talapin, W.Gaschler, C.B.Murray: J. Am. Chem. Soc.127 (2005) 7140. 10.1021/ja050107sSuche in Google Scholar PubMed

[5] S.Park, J.-H.Lim, S.W.Chung, C.A.Mirkin: Science303 (2004) 348. 10.1126/science.1092463Suche in Google Scholar PubMed

[6] C.Pacholski, A.Kornowski, H.Weller: Angew. Chem., Int. Ed.41 (2002) 1188. 10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5Suche in Google Scholar

[7] Y.Huang, X.F.Duan, C.M.Lieber: Small1 (2005) 142. 10.1002/smll.200400030Suche in Google Scholar

[8] J.B.Liang, J.W.Liu, Q.Xie, S.Bai, W.C.Yu, Y.T.Qian: J. Phys. Chem. B109 (2005) 9463. 10.1021/jp045006fSuche in Google Scholar

[9] Q.Y.Lu, F.Gao, D.Y.Zhao: Angew. Chem., Int. Ed.41 (2002) 1932. 10.1002/1521-3773(20020301)41:5<865::AID-ANIE865>3.0.CO;2-FSuche in Google Scholar

[10] Z.P.Zhang, X.Q.Shao, H.D.Yu, Y.B.Wang, M.Y.Han: Chem. Mater.17 (2005) 332. 10.1021/cm047980xSuche in Google Scholar

[11] Ma.D.L.Ruiz Peralta, U.Pal, R.S.Zeferino: ACS Applied Materials & Interfaces.4 (2012) 4807. 10.1021/am301155uSuche in Google Scholar PubMed

[12] X.Hu, J.C.Yu, J.Gong, Q.Li, G.Li: Adv. Mater.19 (2007) 2324. 10.1002/adma.200601300Suche in Google Scholar

[13] X.Hu, J.C.Yu: Adv. Funct. Mater.18 (2008) 880. 10.1002/adfm.200700671Suche in Google Scholar

[14] X.Hu, J.C.Yu, J.Gong: J. Phys. Chem. C111 (2007) 11180. 10.1021/jp0652906Suche in Google Scholar

[15] X.Teng, D.Black, N.J.Watkins, Y.Gao, H.Yang: Nano Lett.3 (2003) 261. 10.1021/nl025918ySuche in Google Scholar

[16] S.Seino, T.Kinoshita, Y.Otome, K.Okitsu, T.Nakagawa, T.A.Yamamoto: Chem. Lett.32 (2003) 690. 10.1246/cl.2003.690Suche in Google Scholar

[17] L.Zhang, Y.H.Dou, H.C.Gu: J. Colloid. Interface Sci.297 (2006) 660. 10.1016/j.jcis.2005.10.065Suche in Google Scholar PubMed

[18] J.Bao, W.Chen, T.Liu, Y.Zhu, P.Jin, L.Wang: ACS Nano1 (2007) 293. 10.1021/nn700189hSuche in Google Scholar PubMed

[19] B.Sun, J.Horvat, H.S.Kim, W.S.Kim, J.H.Ahn, G.X.Wang: J. Phys. Chem. C114 (2010) 18753. 10.1021/jp1008797Suche in Google Scholar

[20] X.M.Liu, Y.S.Li: Mater. Sci. Eng. C29 (2009) 1128. 10.1016/j.msec.2008.09.041Suche in Google Scholar

[21] A.A.Tahir, K.G.U.Wijayantha, S.Saremi-Yarahmadi, M.Mazhar, V.McKee: Chem. Mater.21 (2009) 3763. 10.1021/cm803510vSuche in Google Scholar

[22] D.Bersani, P.P.Lottici, A.Montenero: J. Raman. Spectrosc.30 (1999) 355. 10.1002/(SICI)1097-4555(199905)30:5<355::AID-JRS398>3.0.CO;2-CSuche in Google Scholar

[23] Y.P.He, Y.M.Miao, C.R.Li, S.Q.Wang, L.Cao, S.S.Xie, G.Z.Yang, B.S.Zou: Phys. Rev. B71 (2005) 125411. 10.1103/PhysRevB.71.045401Suche in Google Scholar

[24] M.F.Chioncel, C.Díaz-Guerra: J. Appl. Phys.104 (2008) 124311. 10.1063/1.3054168Suche in Google Scholar

[25] G.Y.Zhang, Y.Y.Xu, D.Z.Gao, Y.Q.Sun: J. Alloys. Comp.509 (2011) 885. 10.1016/j.jallcom.2010.09.007Suche in Google Scholar

[26] J.J.Zhang, Y.Z.Cheng, Q.Yang: Mater. Lett.63 (2009) 2075. 10.1016/j.matlet.2008.08.001Suche in Google Scholar

[27] A.I.Inamdar, A.C.Sonavane, S.K.Sharma, H.Im, P.S.Patil: J. Alloys. Comp.495 (2010) 76. 10.1016/j.jallcom.2010.01.090Suche in Google Scholar

[28] L.Vayssieres, C.Sathe, S.M.Butorin, D.K.Shuh, J.Nordgren, J.H.Guo: Adv. Mater.17 (2005) 2320. 10.1002/adma.200500992Suche in Google Scholar

[29] D.N.Srivastava, N.Perkas, A.Gedanken, I.Felner: J. Phys. Chem. B106 (2002) 1878. 10.1021/jp015532wSuche in Google Scholar

[30] Y.G.Chang, J.Xu, Y.Y.Zhang, S.Y.Ma, L.H.Xin, L.N.Zhu, C.T.Xu: J. Phys. Chem. C113 (2009) 18761. 10.1021/jp808424gSuche in Google Scholar

Received: 2013-01-08
Accepted: 2013-06-18
Published Online: 2013-11-05
Published in Print: 2013-11-14

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110969/html
Button zum nach oben scrollen