Home Oscillative surface morphology in peritectic NiAl using phase-field modeling
Article
Licensed
Unlicensed Requires Authentication

Oscillative surface morphology in peritectic NiAl using phase-field modeling

  • Marius Kist , Abhik Choudhury and Britta Nestler
Published/Copyright: November 5, 2013
Become an author with De Gruyter Brill

Abstract

The NiAl-γ–γ′-system is numerically modeled using a multi-phase-field approach near its peritectic. The free energies are approximated as second order polynomials of the concentration. The parameters of these functions are fitted using experimentally determined values for the peritectic equilibrium concentrations and the liquidus/solidus slopes at the peritectic temperature. A study on lateral growth of a peritectic phase (γ') layer on a primary (γ) substrate reveals an oscillation of the layer interfaces at very low undercoolings (0.08 K). This morphology has its seeds in an oscillatory rotation of the triple junction. A mechanism for the origin of rotation is described and a reason for its disappearance at higher undercoolings is discussed. While the γ–γ′ surface energy as well as the γ interdiffusion constant are unknown, the influence of these parameters on the oscillation morphology is investigated.


* Correspondence address, Marius Kist, Building A, Room 322, Haid-und-Neu-Str. 7, D-76131 Karlsruhe, Germany, Tel.: +49(0)721-608-45022, E-mail:

References

[1] J.Brooks, A.Thompson: Int. Mater. Rev.36 (1991) 1644.10.1179/imr.1991.36.1.16Search in Google Scholar

[2] S.Deevi, V.Sikka: Intermetallics4 (1996) 357375. 10.1016/0966-9795(95)00056-9Search in Google Scholar

[3] C.Liu: MiCon 86, Optimization of Processing, Properties, and Service Performance Through Microstructural Control: A Symposium, STP 979, ASTM International, (1988) 222.Search in Google Scholar

[4] R.MacKay, M.Nathal: Acta Metall. Mater.38 (1990) 9931005. 10.1016/0956-7151(90)90171-CSearch in Google Scholar

[5] M.Donachie, S.Donachie: Superalloys: a technical guide, ASM Int., Materials Park, OH, (2002).10.31399/asm.tb.stg2.9781627082679Search in Google Scholar

[6] S.Deevi, V.Sikka, C.Liu: Prog. Mater. Sci.42 (1997) 177192. 10.1016/S0079-6425(97)00014-5Search in Google Scholar

[7] J.Lee, J.Verhoeven: J. Cryst. Growth144 (1994) 353366. 10.1016/0022-0248(94)90477-4Search in Google Scholar

[8] S.Dobler, T.Lo, M.Plapp, A.Karma, W.Kurz: Acta Mater.52 (2004) 27952808. 10.1016/j.actamat.2004.02.026Search in Google Scholar

[9] S.Akamatsu, M.Plapp, G.Faivre, A.Karma: Phys. Rev. E66 (2002) 030501. 10.1103/PhysRevE.66.030501Search in Google Scholar

[10] T.Shing Lo, A.Karma, M.Plapp: Phys. Rev. E63 (2001) 031504. 10.1103/PhysRevE.63.031504Search in Google Scholar

[11] T.Lo, S.Dobler, M.Plapp, A.Karma, W.Kurz: Acta Mater.51 (2003) 599611. 10.1016/S1359-6454(02)00440-8Search in Google Scholar

[12] S.Akamatsu, G.Faivre, S.Moulinet: Metall. Mater. Trans. A32 (2001) 20392048. 10.1007/s11661-001-0016-ySearch in Google Scholar

[13] Z.Feng, J.Shen, Z.Min, L.Wang, H.Fu: Mater. Lett.67 (2012) 1416. 10.1016/j.matlet.2011.09.049Search in Google Scholar

[14] M.Ohno, K.Matsuura: Acta Mater.58. 18 (2010) 61346141. 10.1016/j.actamat.2010.07.031Search in Google Scholar

[15] D.Phelan, M.Reid, R.Dippenaar: Mater. Sci. Eng.: A477 (2008) 226232. 10.1016/j.msea.2007.05.090Search in Google Scholar

[16] H.Shibata, Y.Arai, M.Suzuki, T.Emi: Metall. Mater. Trans. B31 (2000) 981991. 10.1007/s11663-000-0074-3Search in Google Scholar

[17] W.Bosze, R.Trivedi: Metall. Mater. Trans. B5 (1974) 511512. 10.1007/BF02644122Search in Google Scholar

[18] H.Fredriksson, T.Nylen: Metal Science16 (1982) 283294. 10.1179/030634582790427370Search in Google Scholar

[19] M.Ohno, K.Matsuura: Acta Mater.58 (2010) 57495758. 10.1016/j.actamat.2010.06.050Search in Google Scholar

[20] C.Hüter, G.Boussinot, E.A.Brener, D.E.Temkin: Phys. Rev. E83 (2011) 050601. 10.1103/PhysRevE.83.050601Search in Google Scholar PubMed

[21] B.Nestler, H.Garcke, B.Stinner: Phys. Rev. E71 (2005) 041609. 10.1103/PhysRevE.71.041609Search in Google Scholar PubMed

[22] A.Choudhury, B.Nestler: Phys. Rev. E85 (2012) 021602. 10.1103/PhysRevA.85.021602Search in Google Scholar

[23] M.Choudhury: Quantitative phase-field model for phase transformations in multi-component alloys, Karlsruher Institut für Technologie (KIT), Karlsruhe (2012).Search in Google Scholar

[24] O.Hunziker, W.Kurz: Metall. Mater. Trans. A30 (1999) 31673175. 10.1007/s11661-999-0227-1Search in Google Scholar

[25] K.Fujiwara, Z.Horita: Acta Mater.50 (2002) 15711579. 10.1016/S1359-6454(02)00018-6Search in Google Scholar

[26] R.Yu, P.Hou: Appl. Phys. Lett.91 (2007) 011907. 10.1063/1.2754355Search in Google Scholar

[27] J.Tiaden, B.Nestler, H.Diepers, I.Steinbach: Physica D: Nonlinear Phenomena115 (1998) 7386. 10.1016/S0167-2789(97)00226-1Search in Google Scholar

[28] B.Nestler, A.Wheeler: Physica D: Nonlinear Phenomena138 (2000) 114133. 10.1016/S0167-2789(99)00184-0Search in Google Scholar

[29] A.Choudhury, B.Nestler, A.Telang, M.Selzer, F.Wendler: Acta Mater.58 (2010) 38153823. 10.1016/j.actamat.2010.03.030Search in Google Scholar

[30] D.Phelan, M.Reid, R.Dippenaar: Metall. Mater. Trans. A37 (2006) 985994. 10.1007/s11661-006-0071-5Search in Google Scholar

[31] W.Kurz, D.Fisher: Fundamentals of solidification, Trans Tech Publications Ltd, Aedermannsdorf (Switzerland)1986.Search in Google Scholar

[32] S.Gyoon Kim, W.Tae Kim, T.Suzuki, M.Ode: J. Cryst. Growth261 (2004) 135158. 10.1016/j.jcrysgro.2003.08.078Search in Google Scholar

Received: 2012-10-24
Accepted: 2013-06-10
Published Online: 2013-11-05
Published in Print: 2013-11-14

© 2013, Carl Hanser Verlag, München

Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110966/html
Scroll to top button