Oscillative surface morphology in peritectic NiAl using phase-field modeling
-
Marius Kist
, Abhik Choudhury und Britta Nestler
Abstract
The NiAl-γ–γ′-system is numerically modeled using a multi-phase-field approach near its peritectic. The free energies are approximated as second order polynomials of the concentration. The parameters of these functions are fitted using experimentally determined values for the peritectic equilibrium concentrations and the liquidus/solidus slopes at the peritectic temperature. A study on lateral growth of a peritectic phase (γ') layer on a primary (γ) substrate reveals an oscillation of the layer interfaces at very low undercoolings (0.08 K). This morphology has its seeds in an oscillatory rotation of the triple junction. A mechanism for the origin of rotation is described and a reason for its disappearance at higher undercoolings is discussed. While the γ–γ′ surface energy as well as the γ interdiffusion constant are unknown, the influence of these parameters on the oscillation morphology is investigated.
References
[1] J.Brooks, A.Thompson: Int. Mater. Rev.36 (1991) 16–44.10.1179/imr.1991.36.1.16Suche in Google Scholar
[2] S.Deevi, V.Sikka: Intermetallics4 (1996) 357–375. 10.1016/0966-9795(95)00056-9Suche in Google Scholar
[3] C.Liu: MiCon 86, Optimization of Processing, Properties, and Service Performance Through Microstructural Control: A Symposium, STP 979, ASTM International, (1988) 222.Suche in Google Scholar
[4] R.MacKay, M.Nathal: Acta Metall. Mater.38 (1990) 993–1005. 10.1016/0956-7151(90)90171-CSuche in Google Scholar
[5] M.Donachie, S.Donachie: Superalloys: a technical guide, ASM Int., Materials Park, OH, (2002).10.31399/asm.tb.stg2.9781627082679Suche in Google Scholar
[6] S.Deevi, V.Sikka, C.Liu: Prog. Mater. Sci.42 (1997) 177–192. 10.1016/S0079-6425(97)00014-5Suche in Google Scholar
[7] J.Lee, J.Verhoeven: J. Cryst. Growth144 (1994) 353–366. 10.1016/0022-0248(94)90477-4Suche in Google Scholar
[8] S.Dobler, T.Lo, M.Plapp, A.Karma, W.Kurz: Acta Mater.52 (2004) 2795–2808. 10.1016/j.actamat.2004.02.026Suche in Google Scholar
[9] S.Akamatsu, M.Plapp, G.Faivre, A.Karma: Phys. Rev. E66 (2002) 030501. 10.1103/PhysRevE.66.030501Suche in Google Scholar
[10] T.Shing Lo, A.Karma, M.Plapp: Phys. Rev. E63 (2001) 031504. 10.1103/PhysRevE.63.031504Suche in Google Scholar
[11] T.Lo, S.Dobler, M.Plapp, A.Karma, W.Kurz: Acta Mater.51 (2003) 599–611. 10.1016/S1359-6454(02)00440-8Suche in Google Scholar
[12] S.Akamatsu, G.Faivre, S.Moulinet: Metall. Mater. Trans. A32 (2001) 2039–2048. 10.1007/s11661-001-0016-ySuche in Google Scholar
[13] Z.Feng, J.Shen, Z.Min, L.Wang, H.Fu: Mater. Lett.67 (2012) 14–16. 10.1016/j.matlet.2011.09.049Suche in Google Scholar
[14] M.Ohno, K.Matsuura: Acta Mater.58. 18 (2010) 6134–6141. 10.1016/j.actamat.2010.07.031Suche in Google Scholar
[15] D.Phelan, M.Reid, R.Dippenaar: Mater. Sci. Eng.: A477 (2008) 226–232. 10.1016/j.msea.2007.05.090Suche in Google Scholar
[16] H.Shibata, Y.Arai, M.Suzuki, T.Emi: Metall. Mater. Trans. B31 (2000) 981–991. 10.1007/s11663-000-0074-3Suche in Google Scholar
[17] W.Bosze, R.Trivedi: Metall. Mater. Trans. B5 (1974) 511–512. 10.1007/BF02644122Suche in Google Scholar
[18] H.Fredriksson, T.Nylen: Metal Science16 (1982) 283–294. 10.1179/030634582790427370Suche in Google Scholar
[19] M.Ohno, K.Matsuura: Acta Mater.58 (2010) 5749–5758. 10.1016/j.actamat.2010.06.050Suche in Google Scholar
[20] C.Hüter, G.Boussinot, E.A.Brener, D.E.Temkin: Phys. Rev. E83 (2011) 050601. 10.1103/PhysRevE.83.050601Suche in Google Scholar PubMed
[21] B.Nestler, H.Garcke, B.Stinner: Phys. Rev. E71 (2005) 041609. 10.1103/PhysRevE.71.041609Suche in Google Scholar PubMed
[22] A.Choudhury, B.Nestler: Phys. Rev. E85 (2012) 021602. 10.1103/PhysRevA.85.021602Suche in Google Scholar
[23] M.Choudhury: Quantitative phase-field model for phase transformations in multi-component alloys, Karlsruher Institut für Technologie (KIT), Karlsruhe (2012).Suche in Google Scholar
[24] O.Hunziker, W.Kurz: Metall. Mater. Trans. A30 (1999) 3167–3175. 10.1007/s11661-999-0227-1Suche in Google Scholar
[25] K.Fujiwara, Z.Horita: Acta Mater.50 (2002) 1571–1579. 10.1016/S1359-6454(02)00018-6Suche in Google Scholar
[26] R.Yu, P.Hou: Appl. Phys. Lett.91 (2007) 011907. 10.1063/1.2754355Suche in Google Scholar
[27] J.Tiaden, B.Nestler, H.Diepers, I.Steinbach: Physica D: Nonlinear Phenomena115 (1998) 73–86. 10.1016/S0167-2789(97)00226-1Suche in Google Scholar
[28] B.Nestler, A.Wheeler: Physica D: Nonlinear Phenomena138 (2000) 114–133. 10.1016/S0167-2789(99)00184-0Suche in Google Scholar
[29] A.Choudhury, B.Nestler, A.Telang, M.Selzer, F.Wendler: Acta Mater.58 (2010) 3815–3823. 10.1016/j.actamat.2010.03.030Suche in Google Scholar
[30] D.Phelan, M.Reid, R.Dippenaar: Metall. Mater. Trans. A37 (2006) 985–994. 10.1007/s11661-006-0071-5Suche in Google Scholar
[31] W.Kurz, D.Fisher: Fundamentals of solidification, Trans Tech Publications Ltd, Aedermannsdorf (Switzerland)1986.Suche in Google Scholar
[32] S.Gyoon Kim, W.Tae Kim, T.Suzuki, M.Ode: J. Cryst. Growth261 (2004) 135–158. 10.1016/j.jcrysgro.2003.08.078Suche in Google Scholar
© 2013, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Solubility of nitrogen in ferrite; the Fe–N phase diagram
- The Li–C phase equilibria
- Experimental study of phase equilibria in the “SnO”–SiO2–“FeO” system at silica saturation, and fixed oxygen partial pressures at 1473 K
- The evolution of Y distribution during the processing route of mechanically alloyed iron studied by means of atom probe tomography
- Oscillative surface morphology in peritectic NiAl using phase-field modeling
- Microstructural characterisation of oxide layer developed by sulphuric anodisation on 2017A alloys
- Wear and corrosion behaviour of AISI 310 and AISI 316 stainless steels in synthetic mine water
- Superplasticity of coarse-grained Ti-13V-11Cr-3Al alloy
- Research on the creep fracture mechanism of FGH95 Ni-based superalloy
- Hot pressing of Al2O3 matrix ceramic materials improved by diopside additive
- Tungsten heavy alloy as a filler metal for repair welding of dies for high pressure die casting
- A one-pot synthesis of Ag/α-Fe2O3 nanoplates with gelatin and their photocatalytic activity
- Short Communications
- Effects of coating solution concentration on the interlaminar shear strength of carbon fiber/epoxy/nano-CaCO3 composites
- People
- Dr.-Ing. Christa Blank
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Solubility of nitrogen in ferrite; the Fe–N phase diagram
- The Li–C phase equilibria
- Experimental study of phase equilibria in the “SnO”–SiO2–“FeO” system at silica saturation, and fixed oxygen partial pressures at 1473 K
- The evolution of Y distribution during the processing route of mechanically alloyed iron studied by means of atom probe tomography
- Oscillative surface morphology in peritectic NiAl using phase-field modeling
- Microstructural characterisation of oxide layer developed by sulphuric anodisation on 2017A alloys
- Wear and corrosion behaviour of AISI 310 and AISI 316 stainless steels in synthetic mine water
- Superplasticity of coarse-grained Ti-13V-11Cr-3Al alloy
- Research on the creep fracture mechanism of FGH95 Ni-based superalloy
- Hot pressing of Al2O3 matrix ceramic materials improved by diopside additive
- Tungsten heavy alloy as a filler metal for repair welding of dies for high pressure die casting
- A one-pot synthesis of Ag/α-Fe2O3 nanoplates with gelatin and their photocatalytic activity
- Short Communications
- Effects of coating solution concentration on the interlaminar shear strength of carbon fiber/epoxy/nano-CaCO3 composites
- People
- Dr.-Ing. Christa Blank
- DGM News
- DGM News