Startseite Oscillative surface morphology in peritectic NiAl using phase-field modeling
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Oscillative surface morphology in peritectic NiAl using phase-field modeling

  • Marius Kist , Abhik Choudhury und Britta Nestler
Veröffentlicht/Copyright: 5. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The NiAl-γ–γ′-system is numerically modeled using a multi-phase-field approach near its peritectic. The free energies are approximated as second order polynomials of the concentration. The parameters of these functions are fitted using experimentally determined values for the peritectic equilibrium concentrations and the liquidus/solidus slopes at the peritectic temperature. A study on lateral growth of a peritectic phase (γ') layer on a primary (γ) substrate reveals an oscillation of the layer interfaces at very low undercoolings (0.08 K). This morphology has its seeds in an oscillatory rotation of the triple junction. A mechanism for the origin of rotation is described and a reason for its disappearance at higher undercoolings is discussed. While the γ–γ′ surface energy as well as the γ interdiffusion constant are unknown, the influence of these parameters on the oscillation morphology is investigated.


* Correspondence address, Marius Kist, Building A, Room 322, Haid-und-Neu-Str. 7, D-76131 Karlsruhe, Germany, Tel.: +49(0)721-608-45022, E-mail:

References

[1] J.Brooks, A.Thompson: Int. Mater. Rev.36 (1991) 1644.10.1179/imr.1991.36.1.16Suche in Google Scholar

[2] S.Deevi, V.Sikka: Intermetallics4 (1996) 357375. 10.1016/0966-9795(95)00056-9Suche in Google Scholar

[3] C.Liu: MiCon 86, Optimization of Processing, Properties, and Service Performance Through Microstructural Control: A Symposium, STP 979, ASTM International, (1988) 222.Suche in Google Scholar

[4] R.MacKay, M.Nathal: Acta Metall. Mater.38 (1990) 9931005. 10.1016/0956-7151(90)90171-CSuche in Google Scholar

[5] M.Donachie, S.Donachie: Superalloys: a technical guide, ASM Int., Materials Park, OH, (2002).10.31399/asm.tb.stg2.9781627082679Suche in Google Scholar

[6] S.Deevi, V.Sikka, C.Liu: Prog. Mater. Sci.42 (1997) 177192. 10.1016/S0079-6425(97)00014-5Suche in Google Scholar

[7] J.Lee, J.Verhoeven: J. Cryst. Growth144 (1994) 353366. 10.1016/0022-0248(94)90477-4Suche in Google Scholar

[8] S.Dobler, T.Lo, M.Plapp, A.Karma, W.Kurz: Acta Mater.52 (2004) 27952808. 10.1016/j.actamat.2004.02.026Suche in Google Scholar

[9] S.Akamatsu, M.Plapp, G.Faivre, A.Karma: Phys. Rev. E66 (2002) 030501. 10.1103/PhysRevE.66.030501Suche in Google Scholar

[10] T.Shing Lo, A.Karma, M.Plapp: Phys. Rev. E63 (2001) 031504. 10.1103/PhysRevE.63.031504Suche in Google Scholar

[11] T.Lo, S.Dobler, M.Plapp, A.Karma, W.Kurz: Acta Mater.51 (2003) 599611. 10.1016/S1359-6454(02)00440-8Suche in Google Scholar

[12] S.Akamatsu, G.Faivre, S.Moulinet: Metall. Mater. Trans. A32 (2001) 20392048. 10.1007/s11661-001-0016-ySuche in Google Scholar

[13] Z.Feng, J.Shen, Z.Min, L.Wang, H.Fu: Mater. Lett.67 (2012) 1416. 10.1016/j.matlet.2011.09.049Suche in Google Scholar

[14] M.Ohno, K.Matsuura: Acta Mater.58. 18 (2010) 61346141. 10.1016/j.actamat.2010.07.031Suche in Google Scholar

[15] D.Phelan, M.Reid, R.Dippenaar: Mater. Sci. Eng.: A477 (2008) 226232. 10.1016/j.msea.2007.05.090Suche in Google Scholar

[16] H.Shibata, Y.Arai, M.Suzuki, T.Emi: Metall. Mater. Trans. B31 (2000) 981991. 10.1007/s11663-000-0074-3Suche in Google Scholar

[17] W.Bosze, R.Trivedi: Metall. Mater. Trans. B5 (1974) 511512. 10.1007/BF02644122Suche in Google Scholar

[18] H.Fredriksson, T.Nylen: Metal Science16 (1982) 283294. 10.1179/030634582790427370Suche in Google Scholar

[19] M.Ohno, K.Matsuura: Acta Mater.58 (2010) 57495758. 10.1016/j.actamat.2010.06.050Suche in Google Scholar

[20] C.Hüter, G.Boussinot, E.A.Brener, D.E.Temkin: Phys. Rev. E83 (2011) 050601. 10.1103/PhysRevE.83.050601Suche in Google Scholar PubMed

[21] B.Nestler, H.Garcke, B.Stinner: Phys. Rev. E71 (2005) 041609. 10.1103/PhysRevE.71.041609Suche in Google Scholar PubMed

[22] A.Choudhury, B.Nestler: Phys. Rev. E85 (2012) 021602. 10.1103/PhysRevA.85.021602Suche in Google Scholar

[23] M.Choudhury: Quantitative phase-field model for phase transformations in multi-component alloys, Karlsruher Institut für Technologie (KIT), Karlsruhe (2012).Suche in Google Scholar

[24] O.Hunziker, W.Kurz: Metall. Mater. Trans. A30 (1999) 31673175. 10.1007/s11661-999-0227-1Suche in Google Scholar

[25] K.Fujiwara, Z.Horita: Acta Mater.50 (2002) 15711579. 10.1016/S1359-6454(02)00018-6Suche in Google Scholar

[26] R.Yu, P.Hou: Appl. Phys. Lett.91 (2007) 011907. 10.1063/1.2754355Suche in Google Scholar

[27] J.Tiaden, B.Nestler, H.Diepers, I.Steinbach: Physica D: Nonlinear Phenomena115 (1998) 7386. 10.1016/S0167-2789(97)00226-1Suche in Google Scholar

[28] B.Nestler, A.Wheeler: Physica D: Nonlinear Phenomena138 (2000) 114133. 10.1016/S0167-2789(99)00184-0Suche in Google Scholar

[29] A.Choudhury, B.Nestler, A.Telang, M.Selzer, F.Wendler: Acta Mater.58 (2010) 38153823. 10.1016/j.actamat.2010.03.030Suche in Google Scholar

[30] D.Phelan, M.Reid, R.Dippenaar: Metall. Mater. Trans. A37 (2006) 985994. 10.1007/s11661-006-0071-5Suche in Google Scholar

[31] W.Kurz, D.Fisher: Fundamentals of solidification, Trans Tech Publications Ltd, Aedermannsdorf (Switzerland)1986.Suche in Google Scholar

[32] S.Gyoon Kim, W.Tae Kim, T.Suzuki, M.Ode: J. Cryst. Growth261 (2004) 135158. 10.1016/j.jcrysgro.2003.08.078Suche in Google Scholar

Received: 2012-10-24
Accepted: 2013-06-10
Published Online: 2013-11-05
Published in Print: 2013-11-14

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110966/html?lang=de
Button zum nach oben scrollen