Startseite Hydrothermal synthesis of nanowires, nanobelts, and nanotubes of vanadium oxides from one reaction system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hydrothermal synthesis of nanowires, nanobelts, and nanotubes of vanadium oxides from one reaction system

  • Zhihua Li , Yanwu Zhang und Zhaohui Shi
Veröffentlicht/Copyright: 16. August 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nanowires, nanobelts, and nanotubes of vanadium oxides have been fabricated using the hydrothermal method with surfactants in one reaction system. The nanowires, nanobelts and nanotubes of vanadium oxides can be synthesized selectively by adjusting and controlling the reaction conditions such as surfactants selected, reaction temperature and time, etc. The as-prepared one-dimentional nanomaterials were characterized by means of X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, electron diffraction, and high-resolution transmission electronmicroscopy. The reaction mechanism is also explained according to the experimental data.


* Correspondence address, Dr. Zhihua Li, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China, Tel.: +86 13295485926, Fax: +86 053182615258, E-mail:

References

[1] X.Chen, X.M.Sun, Y.D.Li: Inorg. Chem.41 (2002) 4524. PMid: 12184770; 10.1021/ic010270ySuche in Google Scholar PubMed

[2] K.H.Park, J.Choi, H.J.Kim, J.B.Lee, S.U.Son: Chem. Mater.19 (2007) 3861. 10.1021/cm0617079Suche in Google Scholar

[3] W.Chen, J.F.Peng, L.Q.Mai, H.Yu, Y.Y.Qi: Solid State Chem.132 (2004) 513. 10.1016/j.ssc.2004.09.013Suche in Google Scholar

[4] N.Pinna, U.Wild, J.Urban, R.Schogl: Adv. Mater.15 (2003) 329. 10.1002/adma.200390081Suche in Google Scholar

[5] Z.Gui, R.Fan, W.Q.Mo, X.H.Chen, L.Yang, S.Y.Zhang, Y.Hu, Z.Z.Wang, W.C.Fan: Chem. Mater.14 (2002) 5053. 10.1021/cm020178fSuche in Google Scholar

[6] X.C.Wu, Y.R.Tao, L.Dong, Z.H.Wang, Z.Hu: Mater. Res. Bull.40 (2005) 315. 10.1016/j.materresbull.2004.06.020Suche in Google Scholar

[7] X.L.Li, J.F.Liu, Y.D.Li: Inorg. Chem.42 (2003) 921. 10.1021/ic020728bSuche in Google Scholar PubMed

[8] X.Wang, Y.D.Li: Chem. Eur. J.9 (2003) 300. PMid: 12506386; 10.1002/chem.200390024Suche in Google Scholar PubMed

[9] F.Zhou, H.G.Zheng, X.M.Zhao, Q.X.Guo, X.M.Ni, T.Shen, C.M.Tang: Nanotechnology16 (2005) 2072. PMid: 20817973; 10.1088/0957-4484/16/10/015Suche in Google Scholar PubMed

[10] E.Comini, G.Faglia, G.Sberveglieri: Appl. Phys. Lett.81 (2002) 1870. 10.1063/1.1504867Suche in Google Scholar

[11] S.Shi, M.H.Cao, X.Y.He, H.M.Xie: Cryst. Growth Des.7 (2007) 1893. 10.1021/cg0606390Suche in Google Scholar

[12] J.Chen, S.L.Li, Q.Xu, K.Tanaka: Chem. Commun.2 (2002) 1722. 10.1039/b205109eSuche in Google Scholar PubMed

[13] L.Y.Chen, B.L.Yang, X.C.Zhang, W.Dong, K.Cao, X.P.Zhang: Energy Fuels20 (2006) 915. 10.1021/ef050280Suche in Google Scholar

[14] G.M.Zhu, Z.B.Qu, G.L.Zhuang, Q.Xie, Q.Q.Meng, J.G.Wang: J. Phys. Chem. C115 (2011) 14806. 10.1021/jp109535dSuche in Google Scholar

[15] P.Li, Q.Liu, Z.Liu: Ind. Eng. Chem. Res.50 (2011) 1906. 10.1021/ie100310gSuche in Google Scholar

[16] C.J.Mao, H.C.Pan, X.C.Wu, J.J.Zhu, H.Y.Chen: J. Phys. Chem. B110 (2006) 14709. PMid: 16869577; 10.1021/jp0544538Suche in Google Scholar PubMed

[17] K.Takahashi, S.J.Limmer, Y.Wang, G.Z.Cao: J. Phys. Chem. B108 (2004) 9795. 10.1021/jp0491820Suche in Google Scholar

[18] Z.W.Pan, Z.R.Dai, Z.L.Wang: Science291 (2001) 1947. PMid: 11239151; 10.1126/science.1058120Suche in Google Scholar PubMed

[19] Y.Zhang, Y.W.liu, Y.S.Chen, X.G.Hu: J. Rare Earth23 (2005) 701.Suche in Google Scholar

[20] D.Sun, C.W.Kwon, G.Baure, E.Richman, J.Maclean, B.Dunn, S. H.Tolbert, Adv. Funct. Mater.14 (2004) 1197. 10.1002/adfm.200305055Suche in Google Scholar

[21] R.C.Sides, R.C.Martin: Adv. Mater.17 (2005) 125. 10.1002/adma.200400517Suche in Google Scholar

[22] C.Wu, Y.Xie: Energy Environ. Sci.3 (2010) 1191. 10.1039/c0ee00026dSuche in Google Scholar

[23] P.Zhao, D.S.Wang, J.Lu, C.Y.Nan, X.L.Xiao, Y.D.Li: J. Mater. Res.26 (2011) 424. 10.1557/jmr.2010.23Suche in Google Scholar

[24] J.F.Liu, Q.H.Li, T.H.Wang, D.P.Yu, Y.D.Li: Angew. Chem.116 (2004) 5158. 10.1002/ange.200351988Suche in Google Scholar

[25] F.Zhou, X.M.Zhao, C.G.Yuan, L.Li: Cryst. Growth Des.8 (2008) 723. 10.1021/cg060816xSuche in Google Scholar

[26] J.Livage: Chem. Mater.3 (1991) 578. 10.1021/cm00016a006Suche in Google Scholar

[27] X.L.Sun, S.Li: J. C. Sun: Rare Metals25 (2006) 240. 10.1016/S1001-0521(07)60081-3Suche in Google Scholar

[28] J.Livage: Coord. Chem. Rev.178–180 (1998) 999.10.1016/S0010-8545(98)00105-2Suche in Google Scholar

[29] W.Chen, J.F.Peng, L.Q.Mai, Q.Y.Zhu, Q.Xu: Mater. Let.58 (2004) 2275. 10.1016/S0167-577X(03)00457-9Suche in Google Scholar

[30] L.F.Kong, Z.P.Liu, M.W.Shao, Q.Xie, W.C.Yu, Y.T.Qian: J. Solid State Chem.177 (2004) 690. 10.1016/j.jssc.2003.08.035Suche in Google Scholar

[31] G.T.Chandrppa, N.Steunou, S.Cassaignon, C.Bauvais, J.Livage: Catal. Today78 (2003) 85. 10.1016/S0920-5861(02)00298-5Suche in Google Scholar

[32] B.Azambre, M.J.Hudson: Mater. Lett.57 (2003) 3005. 10.1016/S0167-577X(02)01421-0Suche in Google Scholar

[33] N.Asim, S.Radiman, M.A.Yarmo: Mater. Lett.61 (2007) 2652. 10.1016/j.matlet.2006.10.014Suche in Google Scholar

[34] T.Yao, Y.Oka, N.Yamamoto: Mater. Res. Bull.27 (1992) 669. 10.1016/0025-5408(92)90073-9Suche in Google Scholar

[35] D.Y.Pan, S.Y.Zhang, Y.Q.Chem, J.G.Hou: J. Mater. Res.17 (2002) 1981. 10.1557/JMR.2002.0022Suche in Google Scholar

[36] J.F.Liu, X.Wang, Q.Peng, Y.D.Li: Adv. Mater.17 (2005) 764. 10.1002/adma.200400380Suche in Google Scholar

[37] L.Kong, Z.Liu, M.Niederberger, F.Bieri, B.Schnyder, R.Nes: J. Am. Chem. Soc.121 (1999) 8324. 10.1021/ja991085aSuche in Google Scholar

[38] M.Niederberger, H.-J.Muhr, F.Krumeich, F.Bieri, D.Gunter, R.Nesper: Chem. Mater.12 (2000) 1995. 10.1021/cm001028cSuche in Google Scholar

[39] H.-J.Muhr, F.Krumeich, U.P.Schönholzer, F.Bieri, M.Niederberger, L.J.Gauckler, R.Nesper: Adv. Mater.12 (2000) 231. 10.1002/(SICI)1521-4095(200002)12:3<231::AID-ADMA231>3.0.CO;2-DSuche in Google Scholar

Received: 2012-5-9
Accepted: 2012-9-22
Published Online: 2013-08-16
Published in Print: 2013-06-13

© 2013, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. Analysis of V(C, N) nanoparticles in a medium carbon bainitic microalloyed steel and their influence on strengthening
  5. Experimental and numerical investigation of the microstructural influence on the deformation behavior of notched cp-titanium specimens
  6. Interfacial study of Si–Ge multilayers grown using ultrahigh-vacuum chemical vapor deposition
  7. Age-hardenability related to precipitation and lamellar-forming grain boundary reaction in dental low-carat gold alloy
  8. Calorimetric study and phase diagram investigation of the Au–Ga system
  9. Roles of iron and copper salts for controlling morphology of silver nanostructures
  10. Hydrothermal synthesis of nanowires, nanobelts, and nanotubes of vanadium oxides from one reaction system
  11. Facile synthesis of ultrafine TiO2 nanowires with large aspect ratio and its photoactivity
  12. Kinetics of thermal dehydration of sol-gel derived MgO–ZrO2 composite hydrogel
  13. Synthesis and reaction process of β-Si3N4 by means of carbothermal nitridation of serpentine
  14. Analysis of size effect and anisotropy of 6H – SiC thermal conductivity
  15. Effects of molecular polarity on nanofluidic behavior in a silicalite
  16. Vertical static compression performance of honeycomb paperboard
  17. Short Communications
  18. Synthesis of phase purity V2AlC via self-propagation high temperature sintering
  19. Densification and microwave properties of low-temperature co-fired CaO–B2O3–SiO2 glass-ceramic with La–B–Si additions
  20. DGM News
  21. DGM News
Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110901/html?lang=de
Button zum nach oben scrollen