Home Technology Facile synthesis of ultrafine TiO2 nanowires with large aspect ratio and its photoactivity
Article
Licensed
Unlicensed Requires Authentication

Facile synthesis of ultrafine TiO2 nanowires with large aspect ratio and its photoactivity

  • G. S. Anjusree , A. M. Asha , K. R. V. Subramanian , N. Sivakumar , A. Sreekumaran Nair , Shantikumar V. Nair and Avinash Balakrishnan
Published/Copyright: August 16, 2013

Abstract

In the present study, ultrafine TiO2 nanowires (∼80 nm in diameter) exhibiting large aspect ratio in the order of 103 were synthesized hydrothermally. Phase and morphological analysis of the nanowires was carried out using X-ray diffractometry, X-ray photoelectron spectroscopy and scanning electron microscopy. High resolution transmission electron microscopy revealed the wire exhibiting growth in (101). A Tauc plot derived from UV analysis showed the average band gap values for nanowires to be less than for nanoparticles of similar diameter. It was observed that nanowires exhibited a high degree of photoactivity in an eosin-based dye system which was found to be 20 – 30 % more than that of nanoparticles. This high photoactivity in nanowires was attributed to the longer charge retention which was observed during lifetime measurements, resulting in easy radical formation and dye degradation. Lifetime measurements on the nanowires showed the recombination time to be 54 ns as compared to 43 ns for nanoparticles.


* Correspondence address, Dr. Avinash Balakrishnan, Nanosolar Division, Amrita Centre for Nanosciences and Molecular Medicine, Ponekkara, Kochi, India, Tel.: +91-484-2802020, Fax: +91-484-2802020, E-mail: ,

References

[1] R.Sasikala, A.R.Shirole, V.Sudarsan, V.S.Kamble, C.Sudakar, R.Naik, R.Rao, S.R.Bharadwaj: Appl. Catal. B: Gen.390 (2010) 245. 10.1016/j.apcata.2010.10.016Search in Google Scholar

[2] S.Pavasupree, J.Jitputti, J.Ngamsinlapasathian, S.Yoshikawa: Mater. Res. Bull, 43 (2008) 149. 10.1016/j.materresbull.2007.02.028Search in Google Scholar

[3] L.Amy, A.Linsebigler, G.Lu, J.T.Yates: Chem. Rev.95 (1995) 735. 10.1021/cr00035a013Search in Google Scholar

[4] A.Ashkarran, E.Mahmoudi: J. Theo. Appl. Phys, 3 (2010) 19.Search in Google Scholar

[5] W.Li, C.Liu, Y.Zhou, Y.Bai, X.Feng, Z.Yang, L.Lu, X.Lu, K.Y.Chan: J. Phys. Chem. C112 (2008) 20539. 10.1021/jp0762727Search in Google Scholar

[6] K.Nagaveni, M.S.Hegde, N.Ravishankar, G.N.Subbanna, Giridhar: Langmuir, 20 (2004) 2900. PMid: 15835170; 10.1021/la035777vSearch in Google Scholar PubMed

[7] N.Bao, Y.Li, Z.Wei, G.Yin, J.Niu: J. Phys. Chem. C115 (2011) 5708. 10.1021/jp1100939Search in Google Scholar

[8] D.Yang, H.Liu, Z.Zheng, Y.Yuan, J.Zhao, E.R.Waclawik, X.Ke, H.Zhu: J. Am. Chem. Soc.131(2009) 17885. 10.1021/ja808790pSearch in Google Scholar PubMed

[9] H.S.Hafez: Mater. Lett.63 (2009) 1471. 10.1016/j.matlet.2009.03.057Search in Google Scholar

[10] D.Li, Y.Xia: Nano Lett.3 (2003) 555. 10.1021/nl034039oSearch in Google Scholar

[11] S.H.Nam, H.S.Shim, Y.S.Kim, M.A.Dar, J.G.Kim, W.B.Kim: Appl. Mater. Interfaces2 (2010) 2046. 10.1021/am100319uSearch in Google Scholar

[12] C.Wessel, R.Ostermann, R.Dersch, B.M.Smarsly: J. Phys. Chem. C115 (2011) 362. 10.1021/jp108202bSearch in Google Scholar

[13] L.Cai, Z.Liao, B.Shi: Langmuir, 49 (2010) 3194.Search in Google Scholar

[14] J.S.Chen, L.A.Archer, X.W.Lou: J. Mater. Chem.21 (2011) 9912. 10.1039/c0jm02487bSearch in Google Scholar

[15] C.Wang, X.Zhang, C.Shao, Y.Zhang, G.Yang, P.Sun, X.Liu, H.Liu, Y.Liu, T.Xie, D.Wang: J. Coll. Int. Sci.363 (2011) 157. PMid: 21820128; 10.1016/j.jcis.2011.07.035Search in Google Scholar PubMed

[16] Q.Wei, K.Hirota, K.Tajima, K.Hashimoto: Chem. Mater.18 (2006) 5080. 10.1021/cm051074iSearch in Google Scholar

[17] H.Kaper, S.Sallard, I.Djerdj, M.Antonietti, B.M.Smarsly: Chem. Mater.22 (2010) 3502. 10.1021/cm100627gSearch in Google Scholar

[18] L.Yu, H.Yu, B.Cheng, X.Zhao, O.Zhang: J. Photochem. Photobiol. A: Chem.182 (2006) 121. 10.1016/j.jphotochem.2006.01.022Search in Google Scholar

[19] S.Zhang, Z.Chenb, Y.Li, Q.Wang, L.Wan, Y.You: Mater. Chem. Phys.107 (2008) 1. 10.1016/j.matchemphys.2007.06.066Search in Google Scholar

[20] S.Kalluri, A.M.Asha, P.Anjali, N.Sivakumar, K.R V.Subramanian, S.V.Nair and A.Balakrishnan: Mater. Lett.67 (2011) 376.Search in Google Scholar

[21] S.Kalluri, B.P.Arun., A.M.Asha, R.Vani, P.Anjali, N.Sivakumar, K.R V.Subramanian, S.V.Nair, A.Balakrishnan: Sci. Adv. Mater. (2012) (Accepted, Article in Press).Search in Google Scholar

[22] S.Pavasupree, S.Ngamsinlapasathian, M.Nakajima, Y.Suzuki, S.Yoshikawa: J. Photochem. Photobiol. A: Chem.184 (2006) 163. 10.1016/j.jphotochem.2006.04.010Search in Google Scholar

[23] S.Pavasupree, Y.Suzuki, S.Yoshikawa, R.Kawahata: J. Solidstate. Chem.178 (2005) 3110. 10.1016/j.jssc.2004.10.028Search in Google Scholar

[24] Y.Suzuki, S.Pavasupree. S.Yoshikawa: J. Mater. Res.20 (2005) 1063. 10.1557/JMR.2005.0135Search in Google Scholar

[25] S.K.Padmanabhan, A.Balakrishnan, M.C.Chu, J.J.Lee, T.M.Kim, S. J.Cho: Particuology, 7 (2009) 466. 10.1016/j.partic.2009.06.008Search in Google Scholar

[26] S.Y.Bae, J.Lee, H.Jung, J.Park, J.P.Ahn: J. Am. Chem. Soc.127 (2005) 10802. 10.1021/ja0432968Search in Google Scholar

[27] J.R.Lakowicz: Principles of Fluorescent spectroscopy, Springer (2006). 10.1007/978-0-387-46312-4Search in Google Scholar

[28] J.R.Jennings, A.Ghicov, L.M.Peter, P.Schmuki, A.B.Walker: J. Am. Chem. Soc.130 (2008) 13364. PMid: 18774820; 10.1021/ja804852zSearch in Google Scholar

[29] A.Fujishima, M.Rao, D.A.Tryk: J. Photochem. Photobiol. A: Chem, 1 (2000) 1. 10.1016/S1389-5567(00)00002-2Search in Google Scholar

[30] D.A.Tryk, A.Fujishima, K.Honda: Electrochimica Acta45 (2000) 2363. 10.1016/S0013-4686(00)00337-6Search in Google Scholar

[31] M.N.Rashed, A.A.El-Amin: Int. J. Phys. Sci.2(2007) 73.Search in Google Scholar

Received: 2012-4-18
Accepted: 2012-9-17
Published Online: 2013-08-16
Published in Print: 2013-06-13

© 2013, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Analysis of V(C, N) nanoparticles in a medium carbon bainitic microalloyed steel and their influence on strengthening
  5. Experimental and numerical investigation of the microstructural influence on the deformation behavior of notched cp-titanium specimens
  6. Interfacial study of Si–Ge multilayers grown using ultrahigh-vacuum chemical vapor deposition
  7. Age-hardenability related to precipitation and lamellar-forming grain boundary reaction in dental low-carat gold alloy
  8. Calorimetric study and phase diagram investigation of the Au–Ga system
  9. Roles of iron and copper salts for controlling morphology of silver nanostructures
  10. Hydrothermal synthesis of nanowires, nanobelts, and nanotubes of vanadium oxides from one reaction system
  11. Facile synthesis of ultrafine TiO2 nanowires with large aspect ratio and its photoactivity
  12. Kinetics of thermal dehydration of sol-gel derived MgO–ZrO2 composite hydrogel
  13. Synthesis and reaction process of β-Si3N4 by means of carbothermal nitridation of serpentine
  14. Analysis of size effect and anisotropy of 6H – SiC thermal conductivity
  15. Effects of molecular polarity on nanofluidic behavior in a silicalite
  16. Vertical static compression performance of honeycomb paperboard
  17. Short Communications
  18. Synthesis of phase purity V2AlC via self-propagation high temperature sintering
  19. Densification and microwave properties of low-temperature co-fired CaO–B2O3–SiO2 glass-ceramic with La–B–Si additions
  20. DGM News
  21. DGM News
Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110898/html
Scroll to top button