Home Hydrothermal synthesis of nanowires, nanobelts, and nanotubes of vanadium oxides from one reaction system
Article
Licensed
Unlicensed Requires Authentication

Hydrothermal synthesis of nanowires, nanobelts, and nanotubes of vanadium oxides from one reaction system

  • Zhihua Li , Yanwu Zhang and Zhaohui Shi
Published/Copyright: August 16, 2013
Become an author with De Gruyter Brill

Abstract

Nanowires, nanobelts, and nanotubes of vanadium oxides have been fabricated using the hydrothermal method with surfactants in one reaction system. The nanowires, nanobelts and nanotubes of vanadium oxides can be synthesized selectively by adjusting and controlling the reaction conditions such as surfactants selected, reaction temperature and time, etc. The as-prepared one-dimentional nanomaterials were characterized by means of X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, electron diffraction, and high-resolution transmission electronmicroscopy. The reaction mechanism is also explained according to the experimental data.


* Correspondence address, Dr. Zhihua Li, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China, Tel.: +86 13295485926, Fax: +86 053182615258, E-mail:

References

[1] X.Chen, X.M.Sun, Y.D.Li: Inorg. Chem.41 (2002) 4524. PMid: 12184770; 10.1021/ic010270ySearch in Google Scholar PubMed

[2] K.H.Park, J.Choi, H.J.Kim, J.B.Lee, S.U.Son: Chem. Mater.19 (2007) 3861. 10.1021/cm0617079Search in Google Scholar

[3] W.Chen, J.F.Peng, L.Q.Mai, H.Yu, Y.Y.Qi: Solid State Chem.132 (2004) 513. 10.1016/j.ssc.2004.09.013Search in Google Scholar

[4] N.Pinna, U.Wild, J.Urban, R.Schogl: Adv. Mater.15 (2003) 329. 10.1002/adma.200390081Search in Google Scholar

[5] Z.Gui, R.Fan, W.Q.Mo, X.H.Chen, L.Yang, S.Y.Zhang, Y.Hu, Z.Z.Wang, W.C.Fan: Chem. Mater.14 (2002) 5053. 10.1021/cm020178fSearch in Google Scholar

[6] X.C.Wu, Y.R.Tao, L.Dong, Z.H.Wang, Z.Hu: Mater. Res. Bull.40 (2005) 315. 10.1016/j.materresbull.2004.06.020Search in Google Scholar

[7] X.L.Li, J.F.Liu, Y.D.Li: Inorg. Chem.42 (2003) 921. 10.1021/ic020728bSearch in Google Scholar PubMed

[8] X.Wang, Y.D.Li: Chem. Eur. J.9 (2003) 300. PMid: 12506386; 10.1002/chem.200390024Search in Google Scholar PubMed

[9] F.Zhou, H.G.Zheng, X.M.Zhao, Q.X.Guo, X.M.Ni, T.Shen, C.M.Tang: Nanotechnology16 (2005) 2072. PMid: 20817973; 10.1088/0957-4484/16/10/015Search in Google Scholar PubMed

[10] E.Comini, G.Faglia, G.Sberveglieri: Appl. Phys. Lett.81 (2002) 1870. 10.1063/1.1504867Search in Google Scholar

[11] S.Shi, M.H.Cao, X.Y.He, H.M.Xie: Cryst. Growth Des.7 (2007) 1893. 10.1021/cg0606390Search in Google Scholar

[12] J.Chen, S.L.Li, Q.Xu, K.Tanaka: Chem. Commun.2 (2002) 1722. 10.1039/b205109eSearch in Google Scholar PubMed

[13] L.Y.Chen, B.L.Yang, X.C.Zhang, W.Dong, K.Cao, X.P.Zhang: Energy Fuels20 (2006) 915. 10.1021/ef050280Search in Google Scholar

[14] G.M.Zhu, Z.B.Qu, G.L.Zhuang, Q.Xie, Q.Q.Meng, J.G.Wang: J. Phys. Chem. C115 (2011) 14806. 10.1021/jp109535dSearch in Google Scholar

[15] P.Li, Q.Liu, Z.Liu: Ind. Eng. Chem. Res.50 (2011) 1906. 10.1021/ie100310gSearch in Google Scholar

[16] C.J.Mao, H.C.Pan, X.C.Wu, J.J.Zhu, H.Y.Chen: J. Phys. Chem. B110 (2006) 14709. PMid: 16869577; 10.1021/jp0544538Search in Google Scholar PubMed

[17] K.Takahashi, S.J.Limmer, Y.Wang, G.Z.Cao: J. Phys. Chem. B108 (2004) 9795. 10.1021/jp0491820Search in Google Scholar

[18] Z.W.Pan, Z.R.Dai, Z.L.Wang: Science291 (2001) 1947. PMid: 11239151; 10.1126/science.1058120Search in Google Scholar PubMed

[19] Y.Zhang, Y.W.liu, Y.S.Chen, X.G.Hu: J. Rare Earth23 (2005) 701.Search in Google Scholar

[20] D.Sun, C.W.Kwon, G.Baure, E.Richman, J.Maclean, B.Dunn, S. H.Tolbert, Adv. Funct. Mater.14 (2004) 1197. 10.1002/adfm.200305055Search in Google Scholar

[21] R.C.Sides, R.C.Martin: Adv. Mater.17 (2005) 125. 10.1002/adma.200400517Search in Google Scholar

[22] C.Wu, Y.Xie: Energy Environ. Sci.3 (2010) 1191. 10.1039/c0ee00026dSearch in Google Scholar

[23] P.Zhao, D.S.Wang, J.Lu, C.Y.Nan, X.L.Xiao, Y.D.Li: J. Mater. Res.26 (2011) 424. 10.1557/jmr.2010.23Search in Google Scholar

[24] J.F.Liu, Q.H.Li, T.H.Wang, D.P.Yu, Y.D.Li: Angew. Chem.116 (2004) 5158. 10.1002/ange.200351988Search in Google Scholar

[25] F.Zhou, X.M.Zhao, C.G.Yuan, L.Li: Cryst. Growth Des.8 (2008) 723. 10.1021/cg060816xSearch in Google Scholar

[26] J.Livage: Chem. Mater.3 (1991) 578. 10.1021/cm00016a006Search in Google Scholar

[27] X.L.Sun, S.Li: J. C. Sun: Rare Metals25 (2006) 240. 10.1016/S1001-0521(07)60081-3Search in Google Scholar

[28] J.Livage: Coord. Chem. Rev.178–180 (1998) 999.10.1016/S0010-8545(98)00105-2Search in Google Scholar

[29] W.Chen, J.F.Peng, L.Q.Mai, Q.Y.Zhu, Q.Xu: Mater. Let.58 (2004) 2275. 10.1016/S0167-577X(03)00457-9Search in Google Scholar

[30] L.F.Kong, Z.P.Liu, M.W.Shao, Q.Xie, W.C.Yu, Y.T.Qian: J. Solid State Chem.177 (2004) 690. 10.1016/j.jssc.2003.08.035Search in Google Scholar

[31] G.T.Chandrppa, N.Steunou, S.Cassaignon, C.Bauvais, J.Livage: Catal. Today78 (2003) 85. 10.1016/S0920-5861(02)00298-5Search in Google Scholar

[32] B.Azambre, M.J.Hudson: Mater. Lett.57 (2003) 3005. 10.1016/S0167-577X(02)01421-0Search in Google Scholar

[33] N.Asim, S.Radiman, M.A.Yarmo: Mater. Lett.61 (2007) 2652. 10.1016/j.matlet.2006.10.014Search in Google Scholar

[34] T.Yao, Y.Oka, N.Yamamoto: Mater. Res. Bull.27 (1992) 669. 10.1016/0025-5408(92)90073-9Search in Google Scholar

[35] D.Y.Pan, S.Y.Zhang, Y.Q.Chem, J.G.Hou: J. Mater. Res.17 (2002) 1981. 10.1557/JMR.2002.0022Search in Google Scholar

[36] J.F.Liu, X.Wang, Q.Peng, Y.D.Li: Adv. Mater.17 (2005) 764. 10.1002/adma.200400380Search in Google Scholar

[37] L.Kong, Z.Liu, M.Niederberger, F.Bieri, B.Schnyder, R.Nes: J. Am. Chem. Soc.121 (1999) 8324. 10.1021/ja991085aSearch in Google Scholar

[38] M.Niederberger, H.-J.Muhr, F.Krumeich, F.Bieri, D.Gunter, R.Nesper: Chem. Mater.12 (2000) 1995. 10.1021/cm001028cSearch in Google Scholar

[39] H.-J.Muhr, F.Krumeich, U.P.Schönholzer, F.Bieri, M.Niederberger, L.J.Gauckler, R.Nesper: Adv. Mater.12 (2000) 231. 10.1002/(SICI)1521-4095(200002)12:3<231::AID-ADMA231>3.0.CO;2-DSearch in Google Scholar

Received: 2012-5-9
Accepted: 2012-9-22
Published Online: 2013-08-16
Published in Print: 2013-06-13

© 2013, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Analysis of V(C, N) nanoparticles in a medium carbon bainitic microalloyed steel and their influence on strengthening
  5. Experimental and numerical investigation of the microstructural influence on the deformation behavior of notched cp-titanium specimens
  6. Interfacial study of Si–Ge multilayers grown using ultrahigh-vacuum chemical vapor deposition
  7. Age-hardenability related to precipitation and lamellar-forming grain boundary reaction in dental low-carat gold alloy
  8. Calorimetric study and phase diagram investigation of the Au–Ga system
  9. Roles of iron and copper salts for controlling morphology of silver nanostructures
  10. Hydrothermal synthesis of nanowires, nanobelts, and nanotubes of vanadium oxides from one reaction system
  11. Facile synthesis of ultrafine TiO2 nanowires with large aspect ratio and its photoactivity
  12. Kinetics of thermal dehydration of sol-gel derived MgO–ZrO2 composite hydrogel
  13. Synthesis and reaction process of β-Si3N4 by means of carbothermal nitridation of serpentine
  14. Analysis of size effect and anisotropy of 6H – SiC thermal conductivity
  15. Effects of molecular polarity on nanofluidic behavior in a silicalite
  16. Vertical static compression performance of honeycomb paperboard
  17. Short Communications
  18. Synthesis of phase purity V2AlC via self-propagation high temperature sintering
  19. Densification and microwave properties of low-temperature co-fired CaO–B2O3–SiO2 glass-ceramic with La–B–Si additions
  20. DGM News
  21. DGM News
Downloaded on 10.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110901/html
Scroll to top button