Calorimetric study and phase diagram investigation of the Au–Ga system
-
Dragana Živković
Abstract
The results of calorimetric study and phase equilibria investigation of the Au–Ga system, in the Ga-rich region, are presented. Calorimetric study was done using Oelsen methodology and partial and integral molar thermodynamic quantities were determined at a temperature of 873 K. Phase equilibria investigations were done experimentally – using differential thermal analysis, light optical microscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and theoretically – using the CALPHAD method. Results agree well with available literature data.
References
[1] S.Rapsow, T.Groegewald: Gold Usage, Academic Press, London (1978).Search in Google Scholar
[2] V.M.Malisev, D.Rumjancev: Zoloto, Izdatelstvo Metallurgia, Moskva, (1979). (in Russian).Search in Google Scholar
[3] J.T.Veligdan: Electronics Letters21 (18) (1985) 810. 10.1049/el:19850571Search in Google Scholar
[4] T.Yoshida, T.Miyasaka, H.Okamura, Y.Mizutani, M.Hanaka, S.Miyake, I.Seo, M.Ito: Shika Zairyo Kikai. 9 (6) (1990) 812. PMid: 2135544;Search in Google Scholar
[5] A.Lugstein, M.Steinmair, Y.J.Hyun, E.Bertagnolli, P.Pongratz: Appl. Phys. Lett.90 (2007) 023109. 10.1063/1.2431468Search in Google Scholar
[6] R.Beja: Thèse, Univ. Aix-Marseille, France (1969).Search in Google Scholar
[7] C.Bergman, J.P.Bros, M.Carbonel, M.Gambino, M.Laffitte: Rev. Int. Hautes Temp. Refract.8 (1971) 205.Search in Google Scholar
[8] B.Predel, D.W.Stein: Acta Metallurgica20 (1972) 515. 10.1016/0001-6160(72)90007-7Search in Google Scholar
[9] K.Itagaki, A.Yazawa: Trans. Jpn. Inst. Met.16 (1975) 679.Search in Google Scholar
[10] K.Kameda, T.Azakami: J. Jpn. Inst. Met.40 (1976) 1087.Search in Google Scholar
[11] B.Gather, R.Blachnik: J. Chem. Thermodyn.16 (1984) 487. 10.1016/0021-9614(84)90207-6Search in Google Scholar
[12] E.Hayer, K.L.Komarek, M.Gaune-Escard, J.P.Bros: Z. Metallkde.81 (1990) 233.Search in Google Scholar
[13] F.Weibke, E.Hesse: Z. Anorg. Allgem. Chem.240 (1939) 289. 10.1002/zaac.19392400402Search in Google Scholar
[14] E.A.Owen, E.A.O.Roberts: J. Inst. Met.71 (1945) 213.Search in Google Scholar
[15] C.J.Cooke, W.Hume-Rothery: J. Less-Common Met.10 (1966) 42. 10.1016/0022-5088(66)90044-0Search in Google Scholar
[16] W.Wallace, W.J.Kitchingman: J. Less-Common Met.17 (1969) 263. 10.1016/0022-5088(69)90142-8Search in Google Scholar
[17] R.P.Elliott, F.A.Shunk: Bull. Alloy Phase Diagrams2 (1981) 356. 10.1007/BF02868293Search in Google Scholar
[18] W.G.Moffatt: The Handbook of Binary Phase Diagrams, General Electric Comp., Schenectady, N.Y. (1982).Search in Google Scholar
[19] J.Liu, C.Guo, C.Li, Z.Du: J. Alloys Compd.508 (2010) 62. 10.1016/j.jallcom.2010.08.044Search in Google Scholar
[20] J.Wang, Y.J.Liu, L.B.Liu, H.Y.Zhou, Z.P.Jin: CALPHAD35 (2011) 242. 10.1016/j.calphad.2010.10.009Search in Google Scholar
[21] W.Oelsen, P.Zuhlke: Arch. Eisenhüttenwesen27 (1956) 743.Search in Google Scholar
[22] W.Oelsen, E.Schurmann, H.J.Weigt, O.Oelsen: Arch. Eisenhüttenwesen27 (1956) 487.Search in Google Scholar
[23] W.Oelsen, F.Bieret, G.Schwabe: Arch. Eisenhüttenwesen27 (1956) 607.Search in Google Scholar
[24] D.Živković, I.Katayama, L.Gomidželović, D.Manasijević, R.Novaković: Int. J. Mater. Res.98 (2007) 1025. 10.3139/146.101561Search in Google Scholar
[25] D.Živković, A.Mitovski, Lj.Balanović, D.Manasijević, Ž.Živković: J. Thermal. Anal. Calor.102 (2010) 827. 10.1007/s10973-010-0785-xSearch in Google Scholar
[26] N.Saunders, A.P.Miodownik: CALPHAD (A Comprehensive Guide), Elsevier, London (1998). 10.1016/S1470-1804(98)80019-9Search in Google Scholar
[27] H.L.Lukas, S.G.Fries, B.Sundman: Computational Thermodynamics-The Calphad method, Cambridge University Press, Cambridge, UK (2007). 10.1017/CBO9780511804137Search in Google Scholar
[28] O.Redlich, A.Kister: Ind. Eng. Chem.40 (1948) 345. 10.1021/ie50458a036Search in Google Scholar
[29] C.Tang, P.Zhou, D.D.Zhao, X.M.Yuan, Y.Tang, P.S.Wang, B.Hu, Y.Du, H.H.Xu: J. Min. Metall. Sect. B-Metall.48 (1) (2012) 123. 10.2298/JMMB110909017TSearch in Google Scholar
[30] D.Živković, D.Minić, D.Manasijević, J.Šestak and Ž.Živković: J. Min. Metall. Sect. B-Metall.47 (1) (2011) 23. 10.2298/JMMB1101023ZSearch in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Analysis of V(C, N) nanoparticles in a medium carbon bainitic microalloyed steel and their influence on strengthening
- Experimental and numerical investigation of the microstructural influence on the deformation behavior of notched cp-titanium specimens
- Interfacial study of Si–Ge multilayers grown using ultrahigh-vacuum chemical vapor deposition
- Age-hardenability related to precipitation and lamellar-forming grain boundary reaction in dental low-carat gold alloy
- Calorimetric study and phase diagram investigation of the Au–Ga system
- Roles of iron and copper salts for controlling morphology of silver nanostructures
- Hydrothermal synthesis of nanowires, nanobelts, and nanotubes of vanadium oxides from one reaction system
- Facile synthesis of ultrafine TiO2 nanowires with large aspect ratio and its photoactivity
- Kinetics of thermal dehydration of sol-gel derived MgO–ZrO2 composite hydrogel
- Synthesis and reaction process of β-Si3N4 by means of carbothermal nitridation of serpentine
- Analysis of size effect and anisotropy of 6H – SiC thermal conductivity
- Effects of molecular polarity on nanofluidic behavior in a silicalite
- Vertical static compression performance of honeycomb paperboard
- Short Communications
- Synthesis of phase purity V2AlC via self-propagation high temperature sintering
- Densification and microwave properties of low-temperature co-fired CaO–B2O3–SiO2 glass-ceramic with La–B–Si additions
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Analysis of V(C, N) nanoparticles in a medium carbon bainitic microalloyed steel and their influence on strengthening
- Experimental and numerical investigation of the microstructural influence on the deformation behavior of notched cp-titanium specimens
- Interfacial study of Si–Ge multilayers grown using ultrahigh-vacuum chemical vapor deposition
- Age-hardenability related to precipitation and lamellar-forming grain boundary reaction in dental low-carat gold alloy
- Calorimetric study and phase diagram investigation of the Au–Ga system
- Roles of iron and copper salts for controlling morphology of silver nanostructures
- Hydrothermal synthesis of nanowires, nanobelts, and nanotubes of vanadium oxides from one reaction system
- Facile synthesis of ultrafine TiO2 nanowires with large aspect ratio and its photoactivity
- Kinetics of thermal dehydration of sol-gel derived MgO–ZrO2 composite hydrogel
- Synthesis and reaction process of β-Si3N4 by means of carbothermal nitridation of serpentine
- Analysis of size effect and anisotropy of 6H – SiC thermal conductivity
- Effects of molecular polarity on nanofluidic behavior in a silicalite
- Vertical static compression performance of honeycomb paperboard
- Short Communications
- Synthesis of phase purity V2AlC via self-propagation high temperature sintering
- Densification and microwave properties of low-temperature co-fired CaO–B2O3–SiO2 glass-ceramic with La–B–Si additions
- DGM News
- DGM News