Home Technology Kinetics of thermal dehydration of sol-gel derived MgO–ZrO2 composite hydrogel
Article
Licensed
Unlicensed Requires Authentication

Kinetics of thermal dehydration of sol-gel derived MgO–ZrO2 composite hydrogel

  • Sudip Das , N. K. Mitra and Sukhen Das
Published/Copyright: August 16, 2013

Abstract

The kinetics of thermal dehydration of mixed hydroxide hydrogels in MgO–ZrO2 system was studied as a function of composition by following the isothermal heat treatment route. Kinetic parameters were calculated through the application of the Guggenheim equation. The expulsion of both loosely bound water and constitutional OH groups were not continuous processes but proceeded in steps. The applicability of 1st order reaction kinetics for the major portion of the reaction for all compositions suggests that during the dehydroxylation process the dehydration is essentially controlled by the orientation of H2O molecules and the mutual interaction of hydroxyl groups. Due to a decrease in the concentration of the reacting species the activation energy was always higher at the final stage of dehydration.


* Correspondence address, Mr. Sudip Das, Department of Physics, Jadavpur University, Raja S.C.Mallick Road, Kolkata, West Bengal – 700032, India, Tel.: +919391540516, Fax: +913324138917, E-mail:

References

[1] M.L.Smith, B.Topley: Proc. R. Soc. Lond. A134 (1931) 224-245. 10.1098/rspa.1931.0193Search in Google Scholar

[2] D.P.Butt, K.S.Lackner, C.H.Wendt, S.D.Conzone, H.Kung, Y.C.Lu, J.K.Bremser: J. Am. Ceram. Soc.79 (7) (1996) 1892-1898. 10.1111/j.1151-2916.1996.tb08010.xSearch in Google Scholar

[3] I.Halikia, P.Neou-Syngouna, D.Kolitsa: Thermochim. Acta320 (1–2) (1998) 75-88.10.1016/S0040-6031(98)00413-4Search in Google Scholar

[4] B.V.L'vov, A.V.Novichikhin, A.O.Dyakov: Thermochim. Acta315 (1998) 135-143. 10.1016/S0040-6031(97)00404-8Search in Google Scholar

[5] M.Hartman, O.Trnka, K.Svoboda, J.Kocurek: Chem. Eng. Sci.49 (8) (1994) 1209-1216. 10.1016/0009-2509(94)85091-7Search in Google Scholar

[6] G.Gusmano, P.Nunziante, E.Traversa, G.Chiozzini: J. Eur. Ceram. Soc.7 (1991) 31-39. 10.1016/0955-2219(91)90051-ZSearch in Google Scholar

[7] R.Cypries, R.Wollat, J.Raucq: Ber. Dtsch. Keram. Ges.40 (1963) 527.Search in Google Scholar

[8] J.Livage, K.Doi, C.Mazieres: J. Am. Ceram. Soc.51 (6) (1968) 349-353. 10.1111/j.1151-2916.1968.tb15952.xSearch in Google Scholar

[9] S.A.Selim, T.M.El-Akkad: J. Appl. Chem. Biotechnol.27 (1) (1977) 58-66. 10.1002/jctb.5020270111Search in Google Scholar

[10] T.Sato, F.Owaza, T.Nakamura, H.Watanabe, S.Ikoma: Thermochim. Acta34 (1979) 211-220. 10.1016/0040-6031(79)87110-5Search in Google Scholar

[11] I.Y.Nekrasov, V.S.Korzhinsksya: Dokl Akad Nauk SSSR 319 (4) (1991) 970–974.Search in Google Scholar

[12] S.Maitra, S.Das, R.Ray, N.K.Mitra: Ceram. Int.34 (2008) 485-490. 10.1016/j.ceramint.2006.11.004Search in Google Scholar

[13] N.K.Mitra, S.Maitra, K.Roy: J. Mater. Sci. Lett.13 (1994) 538-40. 10.1007/BF00270966Search in Google Scholar

[14] M.Balasubramanium, S.K.Malhotra, C.V.Gokularathnam: J. Brit. Ceram. Trans.95 (1996) 236-366.Search in Google Scholar

[15] A.Bielanski, F.C.Tompkins: Trans. Faraday Soc.46 (1950) 1072-1081. 10.1039/tf9504601072Search in Google Scholar

[16] W.E.Garner: Chemistry of the solid state, Butterworths scientific publications, London (1955).Search in Google Scholar

[17] P.Murray, J.White: Trans. Brit. Ceram. Soc.54 (1955) 151-187.Search in Google Scholar

[18] W.E.Garner, M.G.Tanner: J. Chem. Soc. (1930) 47-57. 10.1039/jr9300000047Search in Google Scholar

[19] J.D.Bernal, H.D.Megaw: Proc. R. Soc. Lond. A151 (1935) 384-420. 10.1098/rspa.1935.0157Search in Google Scholar

[20] R.C.Mackenzie (Eds.): The differential thermal investigation of clays, Mineralogical Soc. The Central Press, London (1957) 318.Search in Google Scholar

[21] Z.G.Shi, L.Xu, S.L.Da, Y.Q.Feng: Microporous Mesoporous Mater. 94 (1–3) (2006) 34-39.10.1016/j.micromeso.2006.03.017Search in Google Scholar

[22] E.Caproni, F.M.S.Carvalho, R.Muccillo: Solid State Ionics. 179 (27–32) (2008) 1652-1654.10.1016/j.ssi.2008.02.054Search in Google Scholar

[23] C.Huang, Z.Tang, Z.Zhang: J. Am. Ceram. Soc.84 (7) (2001) 1637, 1638. 10.1111/j.1151-2916.2001.tb00889.xSearch in Google Scholar

[24] S.Das, J.Mukhopadhyay, S.Das: Int. J. Mater. Res.102 (2011) 1415-1421. 10.3139/146.110600Search in Google Scholar

[25] Q.H.Zhang, Y.Q.Feng, S.L.Da: Chromatographia. 50 (11–12) 654-660.10.1007/BF02497299Search in Google Scholar

Received: 2012-1-16
Accepted: 2012-9-11
Published Online: 2013-08-16
Published in Print: 2013-06-13

© 2013, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Analysis of V(C, N) nanoparticles in a medium carbon bainitic microalloyed steel and their influence on strengthening
  5. Experimental and numerical investigation of the microstructural influence on the deformation behavior of notched cp-titanium specimens
  6. Interfacial study of Si–Ge multilayers grown using ultrahigh-vacuum chemical vapor deposition
  7. Age-hardenability related to precipitation and lamellar-forming grain boundary reaction in dental low-carat gold alloy
  8. Calorimetric study and phase diagram investigation of the Au–Ga system
  9. Roles of iron and copper salts for controlling morphology of silver nanostructures
  10. Hydrothermal synthesis of nanowires, nanobelts, and nanotubes of vanadium oxides from one reaction system
  11. Facile synthesis of ultrafine TiO2 nanowires with large aspect ratio and its photoactivity
  12. Kinetics of thermal dehydration of sol-gel derived MgO–ZrO2 composite hydrogel
  13. Synthesis and reaction process of β-Si3N4 by means of carbothermal nitridation of serpentine
  14. Analysis of size effect and anisotropy of 6H – SiC thermal conductivity
  15. Effects of molecular polarity on nanofluidic behavior in a silicalite
  16. Vertical static compression performance of honeycomb paperboard
  17. Short Communications
  18. Synthesis of phase purity V2AlC via self-propagation high temperature sintering
  19. Densification and microwave properties of low-temperature co-fired CaO–B2O3–SiO2 glass-ceramic with La–B–Si additions
  20. DGM News
  21. DGM News
Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110895/html
Scroll to top button