Home On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts
Article
Licensed
Unlicensed Requires Authentication

On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts

  • Kaiyun Jiang , Kostas Sarakinos , Adil Atiser , Alexander Reinholdt , Joachim Mayer and Jochen M. Schneider
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

The high temperature stability of γ-Al2O3 films deposited using filtered cathodic arc and plasma assisted chemical vapor deposition on Ti0.33Al0.67N coated WC–Co cutting inserts is investigated. X-ray diffractometry reveals that filtered cathodic arc deposited films transform partially into the thermodynamically stable α-Al2O3 phase at a temperature of 1000°C. The γ to α-Al2O3 transformation for plasma assisted chemical vapor deposition grown films is observed at 900°C. These results are in qualitative agreement with differential scanning calorimetry measurements. Transmission electron microscopy on filtered cathodic arc and plasma assisted chemical vapor deposition films annealed at 900°C reveals the existence of hexagonal AlN in the Ti0.33Al0.67N interlayer, as well as Al depletion at the Al2O3/Ti0.33Al0.67N interface. After annealing the plasma assisted chemical vapor deposition sample at 900°C, α-Al2O3 grains with a size of ∼100 nm are observed inside the γ-Al2O3 matrix, while for filtered cathodic arc samples only the γ-phase is identified. Transmission electron microscopy analysis on both filtered cathodic arc and plasma assisted chemical vapor deposition samples annealed at 1000°C shows that the original Al2O3/Ti0.33Al0.67N/WC–Co layer architecture is no longer intact. The formation of TiO2 is detected along the growth direction of the Al2O3 films. The present study suggests that not only the morphology and the impurities incorporated into γ-Al2O3 but also stability of the Ti0.33Al0.67N interlayer determine the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated hardmetal.


* Correspondence address, Prof. Jochen M Schneider, Ph.D., Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen, Germany, Tel: +49-241-8025966, Fax: +49-241-8022295, E-mail:

References

[1] R.Kopp: Steel Res. Int.75 (2004) 491.10.1002/srin.200405812Search in Google Scholar

[2] R.Kopp, H.Shimahara, J.M.Schneider, D.Kurapov, R.Telle, S.Munstermann, E.Lugscheider, K.Bobzin, M.Maes: Steel Res. Int.75 (2004) 569.Search in Google Scholar

[3] K.Jiang, S.Münstermann, H.J.Günther, J.M.Schneider: Steel Res. Int.81 (2010) 597. 10.1002/srin.201000029Search in Google Scholar

[4] M.Åstrand, T.I.Selinder, F.Fietzke, H.Klosterman: Surf. Coat. Technol.188 (2004) 186. 10.1016/j.surfcoat.2004.08.021Search in Google Scholar

[5] C.Täschner, B.Ljungberg, V.Alfredsson, I.Endler, A.Leonhardt: Surf. Coat. Technol.109 (1998) 257. 10.1016/S0257-8972(98)00561-1Search in Google Scholar

[6] J.L.Endrino, G.S.Fox-Rabinovich, A.Reiter, S.V.Veldhuis, R.E.Galindo, J.M.Albella, J.F.Marco: Surf. Coat. Technol.201 (2007) 4505. 10.1016/j.surfcoat.2006.09.089Search in Google Scholar

[7] C.Lang, M.Schutze: Mater. Corros.48 (1997) 13. 10.1002/maco.19970480104Search in Google Scholar

[8] M.Pfeiler, G.A.Fontalvo, J.Wagner, K.Kutschej, M.Penoy, C.Michotte, C.Mitterer, M.Kathrein: Tribol. Lett.30 (2008) 91. 10.1007/s11249-008-9313-6Search in Google Scholar

[9] R.Prange, R.Cremer, D.Neuschutz: Surf. Coat. Technol.133 (2000) 208. 10.1016/S0257-8972(00)00941-5Search in Google Scholar

[10] F.Rovere, P.H.Mayrhofer, A.Reinholdt, J.Mayer, J.M.Schneider: Surf. Coat. Technol.202 (2008) 5870. 10.1016/j.surfcoat.2008.06.161Search in Google Scholar

[11] W.H.Gitzen: Alumina as a Ceramic Material, The American Ceramic Society, Westerville (1970).Search in Google Scholar

[12] K.Jiang, K.Sarakinos, S.Konstantinidis, J.M.Schneider: J. Phys. D: Appl. Phys.43 (2010) 325202. 10.1088/0022-3727/43/32/325202Search in Google Scholar

[13] T.Kohara, H.Tamagaki, Y.Ikari, H.Fujii: Surf. Coat. Technol.185 (2004) 166. 10.1016/j.surfcoat.2003.11.017Search in Google Scholar

[14] K.Sarakinos, D.Music, F.Nahif, K.Jiang, A.Braun, C.Zilkens, J.M.Schneider: Phys. Status Solidi RRL4 (2010) 154. 10.1002/pssr.201004133Search in Google Scholar

[15] O.Kyrylov, D.Kurapov, J.M.Schneider: Appl. Phys.A80 (2005) 1657. 10.1007/s00339-004-2998-ySearch in Google Scholar

[16] E.Wallin, T.I.Selinder, M.Elfwing, U.Helmersson: Europhys. Lett.82 (2008) 36002. 10.1209/0295-5075/82/36002Search in Google Scholar

[17] Y.Yamada-Takamura, F.Koch, H.Maier, H.Bolt: Surf. Coat. Technol.142 (2001) 260. 10.1016/S0257-8972(01)01206-3Search in Google Scholar

[18] J. M.Andersson, E.Wallin, U.Helmersson, U.Kreissig, E.P.Munger: Thin Solid Films513 (2006) 57. 10.1016/j.tsf.2006.01.016Search in Google Scholar

[19] M.Sridharan, M.Sillassen, J.Bottiger, J.Chevallier, H.Birkedal: Surf. Coat. Technol.202 (2007) 920. 10.1016/j.surfcoat.2007.05.061Search in Google Scholar

[20] S.K.Pradhan, P.J.Reucroft, Y.K.Ko: Surf. Coat. Technol.176 (2004) 382. 10.1016/S0257-8972(03)00750-3Search in Google Scholar

[21] M.Delmas, D.Poquillon, Y.Kihn, C.Vahlas: Surf. Coat. Technol.200 (2005) 1413. 10.1016/j.surfcoat.2005.08.028Search in Google Scholar

[22] A.Khanna, D.G.Bhat: Surf. Coat. Technol.201 (2006) 168. 10.1016/j.surfcoat.2005.11.109Search in Google Scholar

[23] G.Gutiérrez, A.Taga, B.Johansson: Phys. Rev.B65 (2002) 012101.Search in Google Scholar

[24] G.Paglia, A.L.Rohl, C.E.Buckley, J.D.Gale: Phys. Rev.B71 (2005) 224115. 10.1103/PhysRevB.71.224115Search in Google Scholar

[25] I.Levin, D.Brandon: J. Am. Ceram. Soc.81 (1998) 1995. 10.1111/j.1151-2916.1998.tb02581.xSearch in Google Scholar

[26] C.C.Stephen: J. Am. Ceram. Soc.66 (1983) 495. 10.1111/j.1151-2916.1983.tb10589.xSearch in Google Scholar

[27] R.S.Zhou, R.L.Snyder: Acta Crystallogr., Sect. B: Struct. Sci.47 (1991) 617. 10.1107/S0108768191002719Search in Google Scholar

[28] K.Wefers, C.Misra: Alcoa Laboratories, Vol. No. 19, Pittsburg (1987).Search in Google Scholar

[29] J.M.McHale, A.Auroux, A.J.Perrotta, A.Navrotsky: Science277 (1997) 788. 10.1126/science.277.5327.788Search in Google Scholar

[30] S.W.Wang, A.Y.Borisevich, S.N.Rashkeev, M.V.Glazoff, K.Sohlberg, S.J.Pennycook, S.T.Pantelides: Nat. Mater.3 (2004) 143. 14991014 10.1038/nmat1077Search in Google Scholar PubMed

[31] D.H.Trinh, K.Back, G.Pozina, H.Blomqvist, T.Selinder, M.Collin, I.Reineck, L.Hultman, H.Högberg: Surf. Coat. Technol.203 (2009) 1682. 10.1016/j.surfcoat.2008.12.028Search in Google Scholar

[32] T.C.Chou, T.G.Nieh: J. Am. Ceram. Soc.74 (1991) 2270. 10.1111/j.1151-2916.1991.tb08295.xSearch in Google Scholar

[33] K.Bobzin, N.Bagcivan, P.Immich, M.Ewering: Adv. Eng. Mater.11 (2009) 590. 10.1002/adem.200800421Search in Google Scholar

[34] V.Edlmayr, M.Moser, C.Walter, C.Mitterer: Surf. Coat. Technol.204 (2010) 1576. 10.1016/j.surfcoat.2009.10.002Search in Google Scholar

[35] V.Edlmayr, T.P.Harzer, R.Hoffmann, D.Kiener, C.Scheu, C.Mitterer: J. Vac. Sci. Technol.A29 (2011) 041506. 10.1116/1.3584803Search in Google Scholar

[36] P.Eklund, M.Sridharan, G.Singh, J.Bøttiger: Plasma Processes Polym.6 (2009) 907. 10.1002/ppap.200932301Search in Google Scholar

[37] J.Musil, J.Blažek, P.Zeman, Š.Prokšová, M.Šašek, R.Čerstvý: Appl. Surf. Sci.257 (2010) 1058. 10.1016/j.apsusc.2010.07.107Search in Google Scholar

[38] D.D.Ragan, T.Mates, D.R.Clarke: J. Am. Ceram. Soc.86 (2003) 541. 10.1111/j.1151-2916.2003.tb03338.xSearch in Google Scholar

[39] A.Atiser, S.Mraz, J.M.Schneider: J. Phys. D: Appl. Phys.42 (2009) 015202. 10.1088/0022-3727/42/1/015202Search in Google Scholar

[40] R.Snyders, K.Jiang, D.Music, S.Konstantinidis, T.Markus, A.Reinholdt, J.Mayer, J.M.Schneider: Surf. Coat. Technol.204 (2009) 215. 10.1016/j.surfcoat.2009.07.019Search in Google Scholar

[41] D.Kurapov, J.Reiss, D.H.Trinh, L.Hultman, J.M.Schneider: J. Vac. Sci. Technol.A25, (2007) 831. 10.1116/1.2748802Search in Google Scholar

[42] http://cimewww.epfl.ch/people/stadelmann/jemswebsite/jems.html.Search in Google Scholar

[43] in International Centre for Diffraction Data JCPDS Powder Diffraction File No 10-425., 1999.Search in Google Scholar

[44] in International Centre for Diffraction Data JCPDS Powder Diffraction File No 21-1276., 1999.Search in Google Scholar

[45] in International Centre for Diffraction Data JCPDS Powder Diffraction File No 25-1495., 1999.Search in Google Scholar

[46] in International Centre for Diffraction Data JCPDS Powder Diffraction File No 38-1420., 1999.Search in Google Scholar

[47] in International Centre for Diffraction Data JCPDS Powder Diffraction File No 10-173., 1999.Search in Google Scholar

[48] R.Rachbauer, E.Stergar, S.Massl, M.Moser, P.H.Mayrhofer: Scr. Mater.61 (2009) 725. 10.1016/j.scriptamat.2009.06.015Search in Google Scholar

[49] P.H.Mayrhofer, L.Hultman, J.M.Schneider, P.Staron, H.Clemens: Int. J. Mater. Res.98 (2007) 1054. 10.3139/146.101570Search in Google Scholar

[50] P.H.Mayrhofer, F.D.Fischer, H.J.Bohm, C.Mitterer, J.M.Schneider: Acta Mater.55 (2007) 1441. 10.1016/j.actamat.2006.09.045Search in Google Scholar

[51] D.McIntyre, J.E.Greene, G.Hakansson, J.E.Sundgren, W.D.Munz: J. Appl. Phys.67 (1990) 1542. 10.1063/1.345664Search in Google Scholar

[52] Y.Masashi, S.Yukichi, I.Hiroki, O.Hitoshi, S.Noriyoshi: J. Soc. Mater. Sci.55 (2006) 785. 10.2472/jsms.55.785Search in Google Scholar

[53] R.F.Yue, Y.Wang, Y.X.Wang, C.H.Chen: Appl. Surf. Sci.148 (1999) 73. 10.1016/S0169-4332(99)00128-2Search in Google Scholar

[54] N.C.Parasnis, K.Ramani: J. Therm. Anal. Calorim. 1999, 55 (1999) 709.Search in Google Scholar

[55] J.M.McHale, A.Navrotsky, A.J.Perrotta: J. Phys. Chem.B101 (1997) 603. 10.1021/jp9627584Search in Google Scholar

[56] S.Konstantinidis, K.Jiang, A.Roobroek, F.Renaux, J.M.Schneider: Plasma Processes Polym.8 (2011) 651. 10.1002/ppap.201000185Search in Google Scholar

Received: 2011-9-9
Accepted: 2012-6-11
Published Online: 2013-05-31
Published in Print: 2012-12-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Effect of texture on grain growth in an interstitial-free steel sheet
  5. Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates
  6. Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel
  7. Modelling of three powder compaction laws for cold die pressing
  8. Surface tension and density of liquid Sn–Ag–Cu alloys
  9. Thermodynamics of liquid Au–Sb–Sn
  10. Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
  11. Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts
  12. First and second differentials of the ultrasonic parameter as an effective tool to identify phase transitions in R1-xAxMnO3 perovskites
  13. Surface oxide layer formation on Au-Pt-Pd-Si alloys for dental resin restorations
  14. On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts
  15. Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites
  16. Simple ionic-liquid assisted method for preparation of Cd1-xZnxS nanoparticles with improved photocatalytic activity
  17. A low-cost route for synthesizing tungsten disulfide film composites from abundant sprayed oxides: Technique and characterization
  18. Anodic behavior of Al–Zn–In sacrificial anodes at different concentration of zinc and indium
  19. Short Communications
  20. Effect of molybdenum addition on fracture toughness and hardness of Fe2B in Fe–B–C cast alloy
  21. DGM News
  22. DGM News
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110810/pdf
Scroll to top button