Startseite Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling

  • Olga Fabrichnaya , Galina Savinykh , Tilo Zienert , Gerhard Schreiber und Hans J. Seifert
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Sub-solidus phase relations in the ZrO2-Sm2O3-Y2O3 and Sm2O3-Al2O3-Y2O3 systems were experimentally studied at 1523-1873 K and thermodynamic databases for these systems were developed. Analysis of phase equilibria in the Sm2O3-Y2O3-Al2O3 system indicated that REAM phase (Sm,Y)4Al2O9 is not stable in the Sm2O3 rich-composition. Therefore, the stability limit of the Sm4Al2O9 phase was established experimentally and thermodynamic parameters of the Sm2O3-Al2O3 system were re-optimised. The eutectic melting in the Sm2O3-Y2O3-Al2O3 system was investigated using differential thermal analysis and scanning electron microscopy. The results obtained were used to assess the mixing parameter of the liquid phase. A new description of binary system was introduced into the database of the ZrO2-Sm2O3-Al2O3 system and phase diagrams were re-calculated. The obtained thermodynamic databases were combined with literature data for the ZrO2-Y2O3-Al2O3 system and a thermodynamic database for the ZrO2-Sm2O3-Y2O3-Al2O3 system was developed.


* Correspondence address, Dr. Olga Fabrichnaya, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany. Tel.: +49-3731-393156, Fax: +49-3731-393657, E-mail:

References

[1] C.G.Levi: Curr. Opinion Solid State Mater. Sci.8 (2004) 77. 10.1016/j.cossms.2004.03.009Suche in Google Scholar

[2] R.Vassen, F.Traeger, D.Stoever: Int. J. Appl. Ceram. Technol.1 (2004) 351. 10.1111/j.1744-7402.2004.tb00186.xSuche in Google Scholar

[3] M.Matsumoto, H.Takayama, D.Yokoe, K.Mukai, H.Matsubara, Y.Kagiya, Y.Sugita: Scr. Mater.54 (2006) 2035. 10.1016/j.scriptamat.2006.03.015Suche in Google Scholar

[4] R.Leckie, S.Kraemer, M.Ruehle, C.G.Levi: Acta Mater.53 (2005) 3281. 10.1016/j.actamat.2005.03.035Suche in Google Scholar

[5] N.R.Rebollo, A.S.Gandhi, C.G.Levi, in: E.J. Opila, P. Hou, T. Maruyama, B. Pieraggi, M. McNallan, D. Shifler, E. Wuchina (Eds.), High Temperature Corrosion and Materials Chemistry IV, Electrochemical Society Proceedings, Vol. PV-2003-16, 2003, pp. 431.Suche in Google Scholar

[6] K.A.Khor, J.Yang: J. Mat. Sci. Lett.16 (1997) 1002. 10.1023/A:1018597802063Suche in Google Scholar

[7] Q.Xu, W.Pan, J.Wang, Ch.Wan, L.Qi, H.Mia: J. Am. Ceram. Soc.89 (2006) 340. 10.1111/j.1551-2916.2005.00667.xSuche in Google Scholar

[8] J.Wu, X.Wei, P.N.Padture, P.G.Klemens, M.Gell, E.Garcia, P.Miranzo, M.I.Osendi: J. Am. Ceram. Soc.85 (2002) 3031. 10.1111/j.1151-2916.2002.tb00574.xSuche in Google Scholar

[9] A.Rouanet: Rev. Int. Hautes Temper. Refract.8 (1971) 161.Suche in Google Scholar

[10] O.Fabrichnaya, M.Zinkevich, F.Aldinger: Int. J. Mat. Res.98 (2007) 838. 10.3139/146.101539Suche in Google Scholar

[11] O.Fabrichnaya, H.J.Seifert: J. Alloys Comp.475 (2009) 86.Suche in Google Scholar

[12] S.M.Lakiza, L.M.Lopato: J. Am. Ceram. Soc.80 (1997) 893. 10.1111/j.1151-2916.1997.tb02919.xSuche in Google Scholar

[13] S.M.Lakiza, L.M.Lopato: J. Am. Ceram. Soc.89 (2006) 3516. 10.1111/j.1551-2916.2006.01263.xSuche in Google Scholar

[14] A.V.Shevchenko, B.S.Nigmanov, Z.A.Zaitseva, L.M.Lopato: Inorg. Mater.22 (1986) 681.Suche in Google Scholar

[15] M.Zinkevich: Prog. Mater. Sci.52 (2007) 597. 10.1016/j.pmatsci.2006.09.002Suche in Google Scholar

[16] O.Fabrichnaya, G.Savinykh, G.Schreiber, M.Dopita, H.J.Seifert: J. Alloys Comp.493 (2010) 263. 10.1016/j.jallcom.2009.12.076Suche in Google Scholar

[17] http://www.bgmn.de.Suche in Google Scholar

[18] L.Lutteroti: MAUD, CPD Newsletter (IUCr) N24 Dec. (2000).Suche in Google Scholar

[19] FabrichnayaO., KriegelM.J., SeidelJ., SavinykhG., OgorodovaL.P., KiselevaI.A., SeifertH.J.: Thermochim. Acta526 (2011) 50. 10.1016/j.tca.2011.08.021Suche in Google Scholar

[20] M.Hillert: J. Alloys Comp.320 (2011) 161. 10.1016/S0925-8388(00)01481-XSuche in Google Scholar

[21] O.Fabricnaya, G.Savinykh, G.Schreiber, H.J.Seifert: J. Phase Equilib. Diffus.32 (2011) 284. 10.1007/s11669-011-9903-0Suche in Google Scholar

[22] Ch.Wang, M.Zinkevich, F.Aldinger: J. Am. Ceram. Soc.89 (2006) 3751. 10.1111/j.1551-2916.2006.01286.xSuche in Google Scholar

[23] B.Hallstedt: J. Am. Ceram. Soc.73 (1990) 15. 10.1111/j.1151-2916.1990.tb05083.xSuche in Google Scholar

[24] Ch.Wang, M.Zinkevich, F.Aldinger: J. Am. Ceram. Soc.90 (2007) 2210. 10.1111/j.1551-2916.2007.01692.xSuche in Google Scholar

[25] M.Mizuno, T.Yamada, T.Noguchi: Yogyo Kyokaishi85 (1977) 374. 10.2109/jcersj1950.85.984_374Suche in Google Scholar

[26] P.P.Budnikov, V.I.Kushakovskii, V.S.Belevantsev: Acad Sci USSR, Dokl. Chem.165 (1965) 1177.Suche in Google Scholar

[27] I.A.Bondar, N.A.Toropov: Bull. Acad. Sci. USSR, Div. Chem. Sci.2 (1966) 195. 10.1007/BF00856037Suche in Google Scholar

Received: 2011-10-27
Accepted: 2012-5-2
Published Online: 2013-05-31
Published in Print: 2012-12-01

© 2012, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. Effect of texture on grain growth in an interstitial-free steel sheet
  5. Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates
  6. Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel
  7. Modelling of three powder compaction laws for cold die pressing
  8. Surface tension and density of liquid Sn–Ag–Cu alloys
  9. Thermodynamics of liquid Au–Sb–Sn
  10. Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
  11. Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts
  12. First and second differentials of the ultrasonic parameter as an effective tool to identify phase transitions in R1-xAxMnO3 perovskites
  13. Surface oxide layer formation on Au-Pt-Pd-Si alloys for dental resin restorations
  14. On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts
  15. Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites
  16. Simple ionic-liquid assisted method for preparation of Cd1-xZnxS nanoparticles with improved photocatalytic activity
  17. A low-cost route for synthesizing tungsten disulfide film composites from abundant sprayed oxides: Technique and characterization
  18. Anodic behavior of Al–Zn–In sacrificial anodes at different concentration of zinc and indium
  19. Short Communications
  20. Effect of molybdenum addition on fracture toughness and hardness of Fe2B in Fe–B–C cast alloy
  21. DGM News
  22. DGM News
Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110794/html?lang=de
Button zum nach oben scrollen