Home Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel
Article
Licensed
Unlicensed Requires Authentication

Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel

  • Fernando González Cámara , K. haled M. Mostafa , Roumen Petrov , Pablo Rodríguez-Calvillo , Eddy De Grave , Danny Segers and Y. van Houbaert
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

FeSi samples with 7.5 mass.% Si were cold deformed with a thickness reduction of 16% and isochronally annealed for one hour at different temperatures. Their microstructure was characterised using positron annihilation lifetime spectroscopy and electron backscatter diffraction.

Positron annihilation mean lifetime values (τmean) decreased slightly with the increase in annealing temperature (20 to 600°C), a process related to recovery. In addition, τmean decreased significantly in the 700–900°C temperature range. The measured value of τmean is 106 ps, which is similar to the pure undeformed Fe after annealing at 900°C. Thus, the material is virtually free of defects at 900°C. Microscopy and diffraction studies showed a high amount of shear bands for the deformed sample. In the temperature range of 20–600°C, no recrystallisation was observed. According to the electron backscatter diffraction data, the recrystallisation starts after 700°C, and it is completed at 900°C.


* Correspondence address, Lic. Fernando González Cámara, Ghent University, Technologiepark 903, B-9052 Zwijnaarde (Gent) – Belgium. Tel.: 0032 (0) 93310443, Fax: 0032 (0) 92645833, E-mail:

References

[1] G.Lakso, M.J.Marcinkowski: Metall. Trans.5 (1974) 839845.10.1007/BF02643136Search in Google Scholar

[2] J.S.Shin, J.S.Bae, H.J.Kim, H.M.Lee, T.D.Lee, E.J.Lavernia, Z.H.Lee: Mater. Sci. Eng. A407 (2005) 282290.10.1016/j.msea.2005.07.012Search in Google Scholar

[3] T.Ros-Yáñez, Y.Houbaert, O.Fischer, J.Schneider: J. Mater. Proc. Tech.141 (2003) 132137.10.1016/S0924-0136(03)00247-4Search in Google Scholar

[4] T.Ros-Yáñez, D.Ruiz, J.Barros, Y.Houbaert: J. Alloys Comp.369 (2004) 125130. 10.1016/j.jallcom.2003.09.070Search in Google Scholar

[5] J.E.Wittig, E.Vogt, G.Frommeyer: Ultramicroscopy30 (1989) 172180. 10.1016/0304-3991(89)90184-8Search in Google Scholar

[6] P.Asoka-Kumar, K.G.Lynn: J. Phys. IV France05 (1995) C1-15C1–25.10.1051/jp4:1995102Search in Google Scholar

[7] K.Petersen, in: W. Brandt (Ed.), Proc. of “Enrico Fermi” Int. School of Physics (1983) 298.Search in Google Scholar

[8] K.M.Mostafa, J.Baerdemaeker, N.Caenegem, D.Segers, Y.Houbaert: J. Mater. Eng. Performance18 (2009) 575581.10.1007/s11665-009-9474-ySearch in Google Scholar

[9] R.Krause-Rehberg, H.S.Leipner: Positron Annihilation in Semiconductors, Springer, Berlin (1999).10.1007/978-3-662-03893-2Search in Google Scholar

[10] P.Hautojärvi, J.Heiniö, M.Manninen, R.M.Nieminen: Phil. Mag.35 (1977).10.1080/14786437708232638Search in Google Scholar

[11] Oim Analysis 4.6 Users Manual 1, Tex Sem Laboratories INC., Draper, UT, USA, 2004.Search in Google Scholar

[12] D.Jorge-Badiola, A.Izamendia, I.Gutierrez: Mater. Sci. Eng. A394 (2005) 445454. 10.1016/j.msea.2004.11.049Search in Google Scholar

[13] S.Zaefferer, P.Romano, F.Friedel: J. Microscopy230 (2008) 499508. 1850367610.1111/j.1365-2818.2008.02010.xSearch in Google Scholar

[14] I.Lemay: Principles of Mechanical Metallurgy, Elsevier Science Publishing (1983).Search in Google Scholar

[15] P.R.Calvillo, R.Petrov, Y.Houbaert, L.Kestens: Mater. Sci. Forum550 (2007) 539. 10.4028/www.scientific.net/MSF.550.539Search in Google Scholar

[16] P.K.Pujari, T.Datta, B.S.Tomar, S.K.Das: Developement of a Pico-second Life-time Spectrometer for Positron Annihilation Studies, Bombay, India (1992).Search in Google Scholar

[17] J.Kansy: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment374 (1996) 235244.10.1016/0168-9002(96)00075-7Search in Google Scholar

[18] M.A.Monge, J.del Rio: J. Phys.: Condens. Matter6 (1994) 2643. 10.1088/0953-8984/6/13/021Search in Google Scholar

[19] R.Petrov, L.Kestens, A.Wasilkowska, Y.Houbaert: Mater. Sci. Eng. A447 (2007) 285297. 10.1016/j.msea.2006.10.023Search in Google Scholar

[20] R.N.West, in: Topics in Current Physics 12, Springer-Verlag, Berlin, 1979.Search in Google Scholar

[21] T.E.M.Staab, R.Krause-Rehberg, B.Kieback: J. Mater. Sci.34 (1999) 38333851. 10.1023/A:1004666003732Search in Google Scholar

[22] M.J.Puska, P.Lanki, R.M.Nieminen: J. Phys.: Condens. Matter1 (1989) 6081. 10.1088/0953-8984/1/35/008Search in Google Scholar

[23] Y.Kamimura, T.Tsutsumi, E.Kuramoto: Phys. Rev. B52 (1995) 879885. 10.1103/PhysRevB.52.879Search in Google Scholar

[24] T.Saburi, S.Nenno, pp. 81324: Phil. Mag.15 (1967) 813. 10.1080/14786436708220929Search in Google Scholar

[25] K.Takita, M.Niikura, K.Sakamoto: Scripta Metallurgica7 (1973) 989996. 10.1016/0036-9748(73)90002-1Search in Google Scholar

[26] T.Wider, S.Hansen, U.Holzwarth, K.Maier: Phys. Rev. B57 (1998) 51265139. 10.1103/PhysRevB.57.5126Search in Google Scholar

[27] K.Arai, K.Ohmori, H.Miura, N.Tsuya: IEEE Transactions on Magnetics20 (1984) 14691471.10.1109/TMAG.1984.1063428Search in Google Scholar

[28] J.Falk, A.R.Büchner: Steel Research59 (1988).10.1002/srin.198801523Search in Google Scholar

Received: 2011-11-28
Accepted: 2012-4-26
Published Online: 2013-05-31
Published in Print: 2012-12-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Effect of texture on grain growth in an interstitial-free steel sheet
  5. Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates
  6. Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel
  7. Modelling of three powder compaction laws for cold die pressing
  8. Surface tension and density of liquid Sn–Ag–Cu alloys
  9. Thermodynamics of liquid Au–Sb–Sn
  10. Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
  11. Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts
  12. First and second differentials of the ultrasonic parameter as an effective tool to identify phase transitions in R1-xAxMnO3 perovskites
  13. Surface oxide layer formation on Au-Pt-Pd-Si alloys for dental resin restorations
  14. On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts
  15. Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites
  16. Simple ionic-liquid assisted method for preparation of Cd1-xZnxS nanoparticles with improved photocatalytic activity
  17. A low-cost route for synthesizing tungsten disulfide film composites from abundant sprayed oxides: Technique and characterization
  18. Anodic behavior of Al–Zn–In sacrificial anodes at different concentration of zinc and indium
  19. Short Communications
  20. Effect of molybdenum addition on fracture toughness and hardness of Fe2B in Fe–B–C cast alloy
  21. DGM News
  22. DGM News
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110793/pdf
Scroll to top button