Home Hydrogen permeability with dislocation in low carbon, aluminium-killed, enamel-grade steels
Article
Licensed
Unlicensed Requires Authentication

Hydrogen permeability with dislocation in low carbon, aluminium-killed, enamel-grade steels

  • Gábor Csiszár , Enikoő Réka Fábián , Tamás Ungár and László Dévényi
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The role of dislocations on hydrogen permeation time of Al-killed, unalloyed low-carbon steels was investigated using a special high-resolution double crystal diffractometer operated at a rotating copper anode with fine focus. Information about dislocation character and Burgers vector populations are given by strain anisotropy. Generally, the hydrogen permeability increases or decreases with dislocation densities but hydrogen accumulation proved to be less favourable near a screw dislocation than an edge dislocation.


* Correspondence address Gábor Csiszár Department of Materials Physics, Eötvös UniversityBudapest, H-1518, Hungary Tel.: +3613722808 Fax: +3613722845 E-mail:

References

[1] H.G.Nelson: Treatise on Materials Science and Technology, Vol. 25, Academic Press, New York (1983) 275.10.1016/B978-0-12-341825-8.50014-3Search in Google Scholar

[2] N.Eliaz, A.Shachar, B.Tal, D.Eliezer: Engineering Failure Analysis9 (2002) 167. 10.1016/S1350-6307(01)00009-7Search in Google Scholar

[3] R.A.Oriani, J.P.Hirth, M.Smialowski: Hydrogen Degradation of Ferrous Alloys, Noyes Publications (1985).Search in Google Scholar

[4] G.M.Pressouyre, I.M.Bernstein: Met. Trans. 12A5 (1981) 835.Search in Google Scholar

[5] P.Harlet, F.Beco, L.Rennard, J.Dawance: Vitr. Enamel9 (1990) 9.Search in Google Scholar

[6] http://www.arcelormittal.com/fce/repository/Brochures/Enamelledsteel_brochure_FR.pdf.Search in Google Scholar

[7] Standard Practice for Evaluation of Hydrogen Uptake, Permeation, and Transport in Metals by an Electrochemical Technique, ASTM International, G 148–97 (Reapproved 2003).Search in Google Scholar

[8] Industrial Standard, MSzEN 10209.Search in Google Scholar

[9] Z.Szklarska-Smialowska, Z.Xia: Corros. Sci.39 (1997) 2171. 10.1016/S0010-938X(97)00100-5Search in Google Scholar

[10] A.J.Kumnick, H.H.Johnson: Acta Met.28 (1980) 33. 10.1016/0001-6160(80)90038-3Search in Google Scholar

[11] A.S.Keth, in: Direct Observation of Imperfection in Crystal, Interscience Publishers, New York (1962) 213.Search in Google Scholar

[12] M.Martinez-Madrid, S.L.I.Chan, J.A.Charles: Mater. Sci. Tech.VI (1985) 456.Search in Google Scholar

[13] K.Kiuchi, R. B.McLellan, in: M. F.Ashby, J.P.Hirth (Eds.), Perspectives in Hydrogen in Metals, Pergamon Press (1990) 49.Search in Google Scholar

[14] S.Simonetti, M.E.Pronsato, G.Brizuela, A.Juan: Appl. Surf. Sci.217 (2003) 62. 10.1016/S0169-4332(03)00582-8Search in Google Scholar

[15] B.Marandet, in: R.W.Staehle (Ed.), National Association of Corrosion Engineers, Houston (1977) 775.Search in Google Scholar

[16] H.Huang, W.J.D.Shaw: Corros. Sci.51 (1995) 32.Search in Google Scholar

[17] P.Alexandru: Metallurgia57 (2005) 16.Search in Google Scholar

[18] A.Fauszt, B.Veroő, RTakács, Á.Horváth, H.Schneider: Mater. Sci. Forum414–415 (2003) 197. 10.4028/www.scientific.net/MSF.414-415.195Search in Google Scholar

[19] M.A.Krivoglaz: Theory of X-ray and thermal neutron scattering by real crystals, Springer-Verlag, Berlin (1996).Search in Google Scholar

[20] T.Ungár, A.Borbély: Appl. Phys. Lett.69 (1996) 3173. 10.1063/1.117951Search in Google Scholar

[21] M.Wilkens: Phys. Stat. Sol.A2 (1970) 359. 10.1002/pssa.19700020224Search in Google Scholar

[22] T.Ungár: Scripta Mater.51 (2004) 778.10.1016/j.scriptamat.2004.05.007Search in Google Scholar

[23] M.Wilkens, in: J.A.Simmons, R.de Wit, R.Bullough (Eds.), Nat. Bur. Stand. (US) Spec. Publ., Vol. II, No. 317, Washington, DC, USA (1970) 1195.Search in Google Scholar

[24] B.E.Warren: Progr. Metal. Phys.8 (1959) 147. 10.1016/0502-8205(59)90015-2Search in Google Scholar

[25] I.Groma: Phys. Rev. B57 (1998) 7535. 10.1103/PhysRevB.57.7535Search in Google Scholar

[26] G.RibárikT.Ungár, J.Gubicza: J. Appl. Cryst.34 (2001) 669. 10.1107/S0021889801011451Search in Google Scholar

[27] E.R.FábiánL.Dévényi: Mater. Sci. Forum537–538 (2007) 33. 10.4028/www.scientific.net/MSF.537-538.33Search in Google Scholar

[28] A.Čiuplys, J.Vilys, V.Čiuplys, V.Kvedaras: Mechanika4 (60) ISSN 1392-1207 (2006) 64.Search in Google Scholar

[29] A.Juan, B.Irigoyen, S.Gesari: Appl. Surf. Sci.172 (2001) 11. 10.1016/S0169-4332(00)00820-5Search in Google Scholar

Received: 2010-12-20
Accepted: 2011-11-24
Published Online: 2013-06-11
Published in Print: 2012-06-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Diffusion characteristics in the Cu–Ti system
  5. Hydrogen permeability with dislocation in low carbon, aluminium-killed, enamel-grade steels
  6. Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting
  7. Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests
  8. Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel
  9. The reoptimization of the binary Se–Te system
  10. Phase diagram of the Sm–Dy–Fe ternary system
  11. Thermophysical properties of solid phase Ti-6Al-4V alloy over a wide temperature range
  12. Determination of mechanical properties by nanoindentation in the case of viscous materials
  13. Mechanical properties and biodegradable behavior of Mg–6%Zn–Ca3(PO4)2 metal matrix composites in Ringer's solution
  14. Effect of Ti addition on the wettability of Al–B4C metal matrix composites
  15. Effect of pH on structure, morphology and optical properties of nanosized cupric oxide prepared by a simple hydrolysis method
  16. Metal-oxide-modified nanostructured carbon application as novel adsorbents for chromate ion removal from water
  17. Biological evaluation of micro-nanoporous layer on Ti–Ag alloy for dental implant
  18. Design of damage tolerance in high-strength steels
  19. Creep modeling and creep life estimation of Gr.91
  20. Influence of the layer architecture of DLC coatings on their wear and corrosion resistance
  21. Potential of mechanical surface treatment for mould and die production
  22. Short Communications
  23. Discussion of defect analysis of a Ti-6Al-4V alloy forging ring
  24. DGM News
  25. DGM News
Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110690/html?lang=en
Scroll to top button