Home Phase diagram of the Sm–Dy–Fe ternary system
Article
Licensed
Unlicensed Requires Authentication

Phase diagram of the Sm–Dy–Fe ternary system

  • Bowen Wang , Yulan Zhu , Junqiu Dai , Ling Weng , Wenmei Huang and Yanming Hao
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The isothermal section at 800°C and vertical sections of SmFe2–DyFe2 and (Sm0.86Dy0.14) Fex (1.6 ≤ x ≤ 2.4) in the Sm–Dy–Fe system were determined by using optical microscopy, X-ray diffraction analysis, electron probe microanalysis, and differential thermal analysis techniques. The isothermal section possesses 6 single-phase regions, 7 two-phase regions, and 3 three-phase regions. There are five intermetallic phases: (Sm, Dy) Fe2, (Sm, Dy) Fe3, (Sm, Dy)6Fe23, Th2Zn17-type (Sm, Dy)2Fe17, and Th2Ni17-type (Sm, Dy)2Fe17. No Sm6Fe23 and (Sm, Dy)2Fe7 phases exist in the ternary system. The vertical section of SmFe2–DyFe2 in the Sm–Dy–Fe system contains 2 single-phase regions, 2 two-phase regions, and 1 three-phase region. Investigation of the vertical section of (Sm0.86Dy0.14) Fex (1.6 ≤ x ≤ 2.4) indicates that it consists of 2 single-phase regions, 5 two-phase regions, and 1 three-phase region.


* Correspondence address Prof. Bowen Wang, School of electrical Engineering, Hebei University of Technology No. 8, Guangrong Road, Tianjin, 300130, China Tel.: +862260204363 Fax: +862260204409 E-mail:

References

[1] J.M.D.Coey, H.Sun: J. Magn. Magn. Mater.87 (1990) L251. 10.1016/0304-8853(90)90756-GSearch in Google Scholar

[2] T.Iriyama, K.Kobayashi, N.Imaoka, T.Fukuda, H.Kato, Y.Nakagawa: IEEE Trans. Magn.28 (1992) 2326. 10.1109/20.179482Search in Google Scholar

[3] A.E.Clark, H.S.Belson: Phys. Rev. B5 (1972) 3642. 10.1103/PhysRevB.5.3642Search in Google Scholar

[4] A.E.Clark, Magnetostrictive rare earth–Fe2 compounds, in: E.P.Wohlfarth (Ed.), Ferromagnetic Materials, Vol. 1, North Holland, 1980, p. 531.10.1016/S1574-9304(05)80122-1Search in Google Scholar

[5] B.W.Wang, W.J.Li, J.S.Song, B.K.Min: J. Appl. Phys.91 (2002) 9246. 10.1063/1.1473227Search in Google Scholar

[6] B.W.Wang, Y.M.Hao, S.C.Busbridge, Z.J.Guo, Y.X.Li: J. Magn. Magn. Mater.246 (2002) 270. 10.1016/S0304-8853(02)00068-9Search in Google Scholar

[7] F.Yang, W.Liu, S.Q.Li, X.K.Lv, J.Li, Z.D.Zhang: Mater. Lett.64 (2010) 608. 10.1016/j.matlet.2009.12.017Search in Google Scholar

[8] V.Hari Babu, G.Markandeyulu, A.Subrahmanyam: Appl. Phys. Lett.90 (2007) 252513. 10.1063/1.2751124Search in Google Scholar

[9] F.Yang, W.Liu, X.K.Lv, B.Li, S.Q.Li, J.Li, Z.D.Zhang: J. Magn. Magn. Mater.322 (2010) 2095. 10.1016/j.jmmm.2010.01.039Search in Google Scholar

[10] H.T.Savage, A.E.Clark, J.M.Powers: IEEE Trans. Magn.11 (1975) 1355. 10.1109/TMAG.1975.1058791Search in Google Scholar

[11] A.E.Clark, R.Abbundi, W.R.Gillmor: IEEE Trans. Magn.14 (1978) 542. 10.1109/TMAG.1978.1059879Search in Google Scholar

[12] J.W.Xie, D.Fort, J.S.Abell: J. Alloys Comp.366 (2004) 241. 10.1016/S0925-8388(03)00668-6Search in Google Scholar

[13] T.B.Massalski, P.R.Subramanian, H.Okamoto, L.Kacprzak: Binary Alloys Phase Diagrams, ASM, Materials Park, OH, 1990.Search in Google Scholar

[14] P.Villars, L.D.Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, Materials Park, OH, 1983.Search in Google Scholar

[15] H.Samata, K.Sakamoto, S.Yashiro, Y.Nagata: J. Cryst. Growth229 (2001) 482. 10.1016/S0022-0248(01)01213-1Search in Google Scholar

[16] H.Samata, Y.Satoh, Y.Nagata, T.Uchida, M.Kai, M.D.Lan: Jpn. J. Appl. Phys.36 (1997) L476. 10.1143/JJAP.36.L476Search in Google Scholar

[17] A.Teresiak, M.Kubis, N.Mattern, K.-H.Müller, B.Wolf: J. Alloys Comp.319 (2001) 168. 10.1016/S0925-8388(01)00899-4Search in Google Scholar

[18] B.-G.Shen, Z.-H.Cheng, H.-Y.Gong, B.Liang, Q.-W.Yan, W.-S.Zhan: Solid State Commun.95 (1995) 813. 10.1016/0038-1098(95)00110-7Search in Google Scholar

[19] E.-Th.Hening, B.Grieb: Phase diagrams for permanent magnet materials, in: G.J.Long, F.Grandjean (Eds.), Supermagnets, Hard Magnetic Materials, Kluwer Academic Publishers, London, (1990) p. 171.Search in Google Scholar

[20] B.W.Wang, W.Liu, W.J.Feng, Y.M.Hao, Y.X.Li: Trans. Nonferrrous Metals Soc. of China12 (2002) 850.Search in Google Scholar

[21] A.S.Van Der Goat, K.H.J.Buschow: J. Less-Common Met.21 (1970) 151. 10.1016/0022-5088(70)90113-XSearch in Google Scholar

[22] B.W.Wang, Z.D.Zhang, S.L.Tang, X.G.Zhao, X.M.Jin: J. Alloys Comp.245 (1996) 153. 10.1016/S0925-8388(96)02498-XSearch in Google Scholar

Received: 2011-1-10
Accepted: 2011-11-16
Published Online: 2013-06-11
Published in Print: 2012-06-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Diffusion characteristics in the Cu–Ti system
  5. Hydrogen permeability with dislocation in low carbon, aluminium-killed, enamel-grade steels
  6. Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting
  7. Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests
  8. Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel
  9. The reoptimization of the binary Se–Te system
  10. Phase diagram of the Sm–Dy–Fe ternary system
  11. Thermophysical properties of solid phase Ti-6Al-4V alloy over a wide temperature range
  12. Determination of mechanical properties by nanoindentation in the case of viscous materials
  13. Mechanical properties and biodegradable behavior of Mg–6%Zn–Ca3(PO4)2 metal matrix composites in Ringer's solution
  14. Effect of Ti addition on the wettability of Al–B4C metal matrix composites
  15. Effect of pH on structure, morphology and optical properties of nanosized cupric oxide prepared by a simple hydrolysis method
  16. Metal-oxide-modified nanostructured carbon application as novel adsorbents for chromate ion removal from water
  17. Biological evaluation of micro-nanoporous layer on Ti–Ag alloy for dental implant
  18. Design of damage tolerance in high-strength steels
  19. Creep modeling and creep life estimation of Gr.91
  20. Influence of the layer architecture of DLC coatings on their wear and corrosion resistance
  21. Potential of mechanical surface treatment for mould and die production
  22. Short Communications
  23. Discussion of defect analysis of a Ti-6Al-4V alloy forging ring
  24. DGM News
  25. DGM News
Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110680/html
Scroll to top button