Diffusion characteristics in the Cu–Ti system
-
Arijit Lai
, Karanam Bhanumurthy , Gajanan Balaji Kale und Bhagwati Prasad Kashyap
Abstract
The formation and growth of intermetallic compounds by diffusion reaction of Cu and Ti were investigated in the temperature range 720–860°C using bulk diffusion couples. Only four, out of the seven stable intermediate compounds of the Cu–Ti system, were formed in the diffusion reaction zone in the sequence CuTi, Cu4Ti, Cu4Ti3 and CuTi2. The activation energies required for the growth of these compounds were determined. The diffusion characteristics of Cu4Ti, CuTi and Cu4Ti3 and Cu(Ti) solid solution were evaluated. The activation energies for diffusion in these compounds were 192.2, 187.7 and 209.2 kJ mol−1 respectively, while in Cu(Ti), the activation energy increased linearly from 201.0 kJ mol−1 to 247.5 kJ mol−1 with increasing concentration of Ti, in the range 0.5–4.0 at.%. The impurity diffusion coefficient of Ti in Cu and its temperature dependence were also estimated. A correlation between the impurity diffusion parameters for several elements in Cu matrix has been established.
References
[1] I.S.Batra, G.K.Dey, U.D.Kulkarni, S.Banerjee: Mater. Sci. Eng. A360 (2003) 220. 10.1016/S0921-5093(03)00440-4Suche in Google Scholar
[2] W.R.OsórioA.Cremasco, P.N.Andrade, A.Garcia, R.Caram: Electrochim. Acta55 (2010) 759. 10.1016/j.electacta.2009.09.016Suche in Google Scholar
[3] A.Meier, P.R.Chidambaram, G.R.Edwards: Acta Mater.46 (1998) 4453. 10.1016/S1359-6454(98)00100-1Suche in Google Scholar
[4] C.Borchers: Phil. Mag. A79 (1999) 537. 10.1080/01418619908210315Suche in Google Scholar
[5] F.H.Santiago, N.C.Castro, V.M.L.Hirata, H.J.D.Rosales, J.D.J.C.Rivera: Mater. Trans.45 (2004) 2312. 10.2320/matertrans.45.2312Suche in Google Scholar
[6] U.D.Kulkarni, G.K.Dey, I.S.Batra: Metall. Mater. Trans. A33 (2002) 3573. 10.1007/s11661-002-0346-4Suche in Google Scholar
[7] J.Rexer: Z. Metallkd.63 (1972) 745.10.1515/ijmr-1972-631113Suche in Google Scholar
[8] O.Taguchi, Y.Iijima, K.Hirano: J. Jpn. Inst. Met.54 (1990) 619.Suche in Google Scholar
[9] Y.Iijima, K.Hoshino, K.Hirano: Metall. Trans. A8 (1977) 997.Suche in Google Scholar
[10] V.E.Oliker, A.A.Mamonova, T.I.Shaposhnikova: Powder Metall. Met. Ceram.35 (1996) 173. 10.1007/BF01389606Suche in Google Scholar
[11] A.E.Gershinskii, A.A.Khoromenko, E.I.Cherepov: Phys. Status Solidi A31 (1975) 61. 10.1002/pssa.2210310107Suche in Google Scholar
[12] J.L.Liotard, D.Gupta, P.A.Psaras, P.S.Ho: J. Appl. Phys.57 (1985) 1895. 10.1063/1.334422Suche in Google Scholar
[13] J.Andrieux, O.Dezellus, F.Bosselet, J.C.Viala: J. Phase Equilib. Diffus.30 (2009) 40. 10.1007/s11669-008-9424-7Suche in Google Scholar
[14] R.K.Shiue, S.K.Wu, C.H.Chan: J. Alloys Compd.372 (2004) 148. 10.1016/j.jallcom.2003.09.155Suche in Google Scholar
[15] D.E.Laughlin, J.W.Cahn: Acta Metall.23 (1975) 329. 10.1016/0001-6160(75)90125-XSuche in Google Scholar
[16] D.E.Laughlin, J.W.Cahn: Metall. Trans.5 (1974) 972. 10.1007/BF02643164Suche in Google Scholar
[17] A.Datta, W.Soffa: Acta Metall.24 (1976) 987. 10.1016/0001-6160(76)90129-2Suche in Google Scholar
[18] M.R.Bateni, S.Mirdamadi, F.Ashrafizadeh, A.Szpunar, R.A.L.Drew: Mater. Manuf. Proc.16 (2001) 219. 10.1081/AMP-100104302Suche in Google Scholar
[19] H.Okamoto: J. Phase Equilib.26 (2002) 549. 10.1361/105497102770331307Suche in Google Scholar
[20] P.Canale, C.Servant: Z. Metallkd.93 (2002) 273.Suche in Google Scholar
[21] J.L.Murray: in T. B.Massalski, H.Okamoto, P. R.Subramanian, L.Kacprzak (Eds.), Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1990) 1494–1496.Suche in Google Scholar
[22] A.Ouensanga: J. Less-Common Met.79 (1981) 237. 10.1016/0022-5088(81)90072-2Suche in Google Scholar
[23] J.L.Pouchou, F.Pichoir: Microbeam Analysis, San Francisco Press, San Francisco, CA (1988) pp. 315–318.Suche in Google Scholar
[24] K.Bhanumurthy, G.B.Kale, S.K.Khera: Metall. Trans. A23 (1992) 1373.Suche in Google Scholar
[25] O.Taguchi, Y.Iijima, K.Hirano: J. Alloy Compd.215 (1994) 329. 10.1016/0925-8388(94)90862-1Suche in Google Scholar
[26] G.P.Tiwari, Y.IIjima, G.B.Kale: Diffus. Defect Data, Pt. A279 (2008) 117.Suche in Google Scholar
[27] J.Andrieux, O.Dezellus, F.Bosselet, M.Sacerdote-Peronnet, J.C.Viala: XXXIIJEEP (2006).Suche in Google Scholar
[28] J.Andrieux, O.Dezellus, F.Bosselet, M.Sacerdote-Peronnet, C.Sigala, R.Chiriac, J.C.Viala: J. Phase Equilib. Diffus.29 (2008) 156. 10.1007/s11669-008-9247-6Suche in Google Scholar
[29] A.Laik, K.Bhanumurthy, G.B.Kale: Intermetallics12 (2004) 69. 10.1016/j.intermet.2003.09.002Suche in Google Scholar
[30] F.J.J.van Loo: Prog. Solid State Chem.20 (1990) 47. 10.1016/0079-6786(90)90007-3Suche in Google Scholar
[31] V.I.Dybkov: Reaction Diffusion and Solid State Chemical Kinetics IPMS Publication, Kyiv (2002).Suche in Google Scholar
[32] R.M.Walser, R.W.Bené: Appl. Phys. Lett.28 (1976) 624. 10.1063/1.88590Suche in Google Scholar
[33] B.Y.Tsaur, S.S.Lau, J.W.Mayer, M.A.Nicolet: Appl. Phys. Lett.38 (1981) 922. 10.1063/1.92183Suche in Google Scholar
[34] R.W.Bené: Appl. Phys. Lett.41 (1982) 529. 10.1063/1.93578Suche in Google Scholar
[35] M.Ronay: Appl. Phys. Lett.42 (1983) 577. 10.1063/1.94007Suche in Google Scholar
[36] R.Pretorius: MRS Proc.25 (1984) 15. 10.1557/PROC-25-15Suche in Google Scholar
[37] R.Pretorius, R.de Reus, A.M.Vredenberg, F.W.Saris: J. Appl. Phys.70 (1991) 3636. 10.1063/1.349211Suche in Google Scholar
[38] R.Pretorius, T.K.Marais, C.C.Theron: Mater. Sci. Eng., R10 (1993) 1.Suche in Google Scholar
[39] K.Bhanumurthy, G.B.Kale, S.P.Garg: Trans. Ind. Inst. Metals48 (1995) 193.Suche in Google Scholar
[40] K.C.Hari Kumar, I.Ansara, P.Wollants, L.Delaey: Z. Metallkd.87 (1996) 666.Suche in Google Scholar
[41] C.Colinet, A.Pasturel, K.H.J.Buschow: J. Alloys Compd.247 (1997) 15. 10.1016/S0925-8388(96)02590-XSuche in Google Scholar
[42] G.Ghosh: Acta Mater.55 (2007) 3347. 10.1016/j.actamat.2007.01.037Suche in Google Scholar
[43] L.Kaufman, H.Bernstein: Computer calculations of phase diagrams, Academy Press, New York (1970).Suche in Google Scholar
[44] N.Saunders, A.P.Miodownik: CALPHAD (Calculation of Phase Diagrams): A comprehensive guide, 1st ed., Pergamon Press, New York (1998).Suche in Google Scholar
[45] A.T.Dinsdale: CALPHAD15 (1991) 317. 10.1016/0364-5916(91)90030-NSuche in Google Scholar
[46] L.Boltzmann: Annal. Phys.53 (1894) 959. 10.1002/andp.18942891315Suche in Google Scholar
[47] C.Matano: Jpn. J. Phys.8 (1933) 109.Suche in Google Scholar
[48] T.Heumann: Z. Phys. Chem.201 (1952) 168.10.1515/zpch-1952-20114Suche in Google Scholar
[49] R.W.Balluffi: Acta Metall.8 (1960) 871. 10.1016/0001-6160(60)90154-1Suche in Google Scholar
[50] P.Villars, L.D.Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, vol. 2, ASM, Metals Park, Ohio (1985).Suche in Google Scholar
[51] W.B.Krull, R.W.Newman: J. Appl. Crystall.3 (1970) 519. 10.1107/S0021889870006787Suche in Google Scholar
[52] M.A.Dayananda: Diffus. Defect Data, Pt. A95–98 (1993) 521.Suche in Google Scholar
[53] C.Wagner: Acta Metall.17 (1969) 99. 10.1016/0001-6160(69)90131-XSuche in Google Scholar
[54] R.C.Ecob, J.V.Bee, B.Ralph: Phys. Status Solidi A52 (1979) 201. 10.1002/pssa.2210520121Suche in Google Scholar
[55] J.Y.Brun, S.Hamar-Thibault, C.Allibert: Z. Metallkd.74 (1983) 525.Suche in Google Scholar
[56] N.Karlsson: J. Inst. Met.79 (1951) 391.Suche in Google Scholar
[57] F.Sauer, V.Freise: Z. Electrochem.66 (1962) 353.Suche in Google Scholar
[58] L.D.Hall: J. Chem. Phys.21 (1953) 87. 10.1063/1.1698631Suche in Google Scholar
[59] H.Mehrer: Diffusion in Solids, Springer-Verlag, Berlin (2007).10.1007/978-3-540-71488-0Suche in Google Scholar
[60] S.Nagarjuna, M.Srinivas, K.Balasubramanian, D.S.Sarma: Mater. Sci. Eng. A259 (1999) 34. 10.1016/S0921-5093(98)00882-XSuche in Google Scholar
[61] W.F.Gale, T.C.Totemeier: Smithells Metals Reference Book, chap. Diffusion, 8th ed., Butterworth, Oxford (2004).Suche in Google Scholar
[62] A.D.Le Claire: Phil. Mag.7 (1962) 141. 10.1080/14786436208201866Suche in Google Scholar
[63] A.D.Le Claire: in: H.Eyring, D.Henderson, W.Jost (Eds.), Physical Chemistry – An Advanced Treatise, vol. X, Academic Press, New York and London (1970) 261–330.Suche in Google Scholar
[64] G.Neumann, C.Tuijn: Self Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, vol. 14 of Pergamon Materials Series, Elsevier Ltd. (2009).Suche in Google Scholar
[65] C.Zener: J. Appl. Phys.22 (1951) 372. 10.1063/1.1699967Suche in Google Scholar
[66] R.A.Swalin: J. Appl. Phys.27 (1956) 544. 10.1063/1.1722421Suche in Google Scholar
[67] D.Beke, T.Geszti, G.Erdelyi: Z. Metallkd.68 (1977) 444.Suche in Google Scholar
[68] D.Lazarus: Phys. Rev.93 (1954) 973. 10.1103/PhysRev.93.973Suche in Google Scholar
[69] J.Pelleg: Acta Metall.14 (1966) 229. 10.1016/0001-6160(66)90306-3Suche in Google Scholar
© 2012, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Diffusion characteristics in the Cu–Ti system
- Hydrogen permeability with dislocation in low carbon, aluminium-killed, enamel-grade steels
- Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting
- Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests
- Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel
- The reoptimization of the binary Se–Te system
- Phase diagram of the Sm–Dy–Fe ternary system
- Thermophysical properties of solid phase Ti-6Al-4V alloy over a wide temperature range
- Determination of mechanical properties by nanoindentation in the case of viscous materials
- Mechanical properties and biodegradable behavior of Mg–6%Zn–Ca3(PO4)2 metal matrix composites in Ringer's solution
- Effect of Ti addition on the wettability of Al–B4C metal matrix composites
- Effect of pH on structure, morphology and optical properties of nanosized cupric oxide prepared by a simple hydrolysis method
- Metal-oxide-modified nanostructured carbon application as novel adsorbents for chromate ion removal from water
- Biological evaluation of micro-nanoporous layer on Ti–Ag alloy for dental implant
- Design of damage tolerance in high-strength steels
- Creep modeling and creep life estimation of Gr.91
- Influence of the layer architecture of DLC coatings on their wear and corrosion resistance
- Potential of mechanical surface treatment for mould and die production
- Short Communications
- Discussion of defect analysis of a Ti-6Al-4V alloy forging ring
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Diffusion characteristics in the Cu–Ti system
- Hydrogen permeability with dislocation in low carbon, aluminium-killed, enamel-grade steels
- Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting
- Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests
- Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel
- The reoptimization of the binary Se–Te system
- Phase diagram of the Sm–Dy–Fe ternary system
- Thermophysical properties of solid phase Ti-6Al-4V alloy over a wide temperature range
- Determination of mechanical properties by nanoindentation in the case of viscous materials
- Mechanical properties and biodegradable behavior of Mg–6%Zn–Ca3(PO4)2 metal matrix composites in Ringer's solution
- Effect of Ti addition on the wettability of Al–B4C metal matrix composites
- Effect of pH on structure, morphology and optical properties of nanosized cupric oxide prepared by a simple hydrolysis method
- Metal-oxide-modified nanostructured carbon application as novel adsorbents for chromate ion removal from water
- Biological evaluation of micro-nanoporous layer on Ti–Ag alloy for dental implant
- Design of damage tolerance in high-strength steels
- Creep modeling and creep life estimation of Gr.91
- Influence of the layer architecture of DLC coatings on their wear and corrosion resistance
- Potential of mechanical surface treatment for mould and die production
- Short Communications
- Discussion of defect analysis of a Ti-6Al-4V alloy forging ring
- DGM News
- DGM News