Home Diffusion characteristics in the Cu–Ti system
Article
Licensed
Unlicensed Requires Authentication

Diffusion characteristics in the Cu–Ti system

  • Arijit Lai , Karanam Bhanumurthy , Gajanan Balaji Kale and Bhagwati Prasad Kashyap
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The formation and growth of intermetallic compounds by diffusion reaction of Cu and Ti were investigated in the temperature range 720–860°C using bulk diffusion couples. Only four, out of the seven stable intermediate compounds of the Cu–Ti system, were formed in the diffusion reaction zone in the sequence CuTi, Cu4Ti, Cu4Ti3 and CuTi2. The activation energies required for the growth of these compounds were determined. The diffusion characteristics of Cu4Ti, CuTi and Cu4Ti3 and Cu(Ti) solid solution were evaluated. The activation energies for diffusion in these compounds were 192.2, 187.7 and 209.2 kJ mol−1 respectively, while in Cu(Ti), the activation energy increased linearly from 201.0 kJ mol−1 to 247.5 kJ mol−1 with increasing concentration of Ti, in the range 0.5–4.0 at.%. The impurity diffusion coefficient of Ti in Cu and its temperature dependence were also estimated. A correlation between the impurity diffusion parameters for several elements in Cu matrix has been established.


* Correspondence address Arijit Laik Materials Science Division Bhabha Atomic Research Centre Mumbai 400 085, India Tel.: +91 22 2559 0457 Fax: +91 22 2550 5151 E-mail:

References

[1] I.S.Batra, G.K.Dey, U.D.Kulkarni, S.Banerjee: Mater. Sci. Eng. A360 (2003) 220. 10.1016/S0921-5093(03)00440-4Search in Google Scholar

[2] W.R.OsórioA.Cremasco, P.N.Andrade, A.Garcia, R.Caram: Electrochim. Acta55 (2010) 759. 10.1016/j.electacta.2009.09.016Search in Google Scholar

[3] A.Meier, P.R.Chidambaram, G.R.Edwards: Acta Mater.46 (1998) 4453. 10.1016/S1359-6454(98)00100-1Search in Google Scholar

[4] C.Borchers: Phil. Mag. A79 (1999) 537. 10.1080/01418619908210315Search in Google Scholar

[5] F.H.Santiago, N.C.Castro, V.M.L.Hirata, H.J.D.Rosales, J.D.J.C.Rivera: Mater. Trans.45 (2004) 2312. 10.2320/matertrans.45.2312Search in Google Scholar

[6] U.D.Kulkarni, G.K.Dey, I.S.Batra: Metall. Mater. Trans. A33 (2002) 3573. 10.1007/s11661-002-0346-4Search in Google Scholar

[7] J.Rexer: Z. Metallkd.63 (1972) 745.10.1515/ijmr-1972-631113Search in Google Scholar

[8] O.Taguchi, Y.Iijima, K.Hirano: J. Jpn. Inst. Met.54 (1990) 619.Search in Google Scholar

[9] Y.Iijima, K.Hoshino, K.Hirano: Metall. Trans. A8 (1977) 997.Search in Google Scholar

[10] V.E.Oliker, A.A.Mamonova, T.I.Shaposhnikova: Powder Metall. Met. Ceram.35 (1996) 173. 10.1007/BF01389606Search in Google Scholar

[11] A.E.Gershinskii, A.A.Khoromenko, E.I.Cherepov: Phys. Status Solidi A31 (1975) 61. 10.1002/pssa.2210310107Search in Google Scholar

[12] J.L.Liotard, D.Gupta, P.A.Psaras, P.S.Ho: J. Appl. Phys.57 (1985) 1895. 10.1063/1.334422Search in Google Scholar

[13] J.Andrieux, O.Dezellus, F.Bosselet, J.C.Viala: J. Phase Equilib. Diffus.30 (2009) 40. 10.1007/s11669-008-9424-7Search in Google Scholar

[14] R.K.Shiue, S.K.Wu, C.H.Chan: J. Alloys Compd.372 (2004) 148. 10.1016/j.jallcom.2003.09.155Search in Google Scholar

[15] D.E.Laughlin, J.W.Cahn: Acta Metall.23 (1975) 329. 10.1016/0001-6160(75)90125-XSearch in Google Scholar

[16] D.E.Laughlin, J.W.Cahn: Metall. Trans.5 (1974) 972. 10.1007/BF02643164Search in Google Scholar

[17] A.Datta, W.Soffa: Acta Metall.24 (1976) 987. 10.1016/0001-6160(76)90129-2Search in Google Scholar

[18] M.R.Bateni, S.Mirdamadi, F.Ashrafizadeh, A.Szpunar, R.A.L.Drew: Mater. Manuf. Proc.16 (2001) 219. 10.1081/AMP-100104302Search in Google Scholar

[19] H.Okamoto: J. Phase Equilib.26 (2002) 549. 10.1361/105497102770331307Search in Google Scholar

[20] P.Canale, C.Servant: Z. Metallkd.93 (2002) 273.Search in Google Scholar

[21] J.L.Murray: in T. B.Massalski, H.Okamoto, P. R.Subramanian, L.Kacprzak (Eds.), Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1990) 14941496.Search in Google Scholar

[22] A.Ouensanga: J. Less-Common Met.79 (1981) 237. 10.1016/0022-5088(81)90072-2Search in Google Scholar

[23] J.L.Pouchou, F.Pichoir: Microbeam Analysis, San Francisco Press, San Francisco, CA (1988) pp. 315318.Search in Google Scholar

[24] K.Bhanumurthy, G.B.Kale, S.K.Khera: Metall. Trans. A23 (1992) 1373.Search in Google Scholar

[25] O.Taguchi, Y.Iijima, K.Hirano: J. Alloy Compd.215 (1994) 329. 10.1016/0925-8388(94)90862-1Search in Google Scholar

[26] G.P.Tiwari, Y.IIjima, G.B.Kale: Diffus. Defect Data, Pt. A279 (2008) 117.Search in Google Scholar

[27] J.Andrieux, O.Dezellus, F.Bosselet, M.Sacerdote-Peronnet, J.C.Viala: XXXIIJEEP (2006).Search in Google Scholar

[28] J.Andrieux, O.Dezellus, F.Bosselet, M.Sacerdote-Peronnet, C.Sigala, R.Chiriac, J.C.Viala: J. Phase Equilib. Diffus.29 (2008) 156. 10.1007/s11669-008-9247-6Search in Google Scholar

[29] A.Laik, K.Bhanumurthy, G.B.Kale: Intermetallics12 (2004) 69. 10.1016/j.intermet.2003.09.002Search in Google Scholar

[30] F.J.J.van Loo: Prog. Solid State Chem.20 (1990) 47. 10.1016/0079-6786(90)90007-3Search in Google Scholar

[31] V.I.Dybkov: Reaction Diffusion and Solid State Chemical Kinetics IPMS Publication, Kyiv (2002).Search in Google Scholar

[32] R.M.Walser, R.W.Bené: Appl. Phys. Lett.28 (1976) 624. 10.1063/1.88590Search in Google Scholar

[33] B.Y.Tsaur, S.S.Lau, J.W.Mayer, M.A.Nicolet: Appl. Phys. Lett.38 (1981) 922. 10.1063/1.92183Search in Google Scholar

[34] R.W.Bené: Appl. Phys. Lett.41 (1982) 529. 10.1063/1.93578Search in Google Scholar

[35] M.Ronay: Appl. Phys. Lett.42 (1983) 577. 10.1063/1.94007Search in Google Scholar

[36] R.Pretorius: MRS Proc.25 (1984) 15. 10.1557/PROC-25-15Search in Google Scholar

[37] R.Pretorius, R.de Reus, A.M.Vredenberg, F.W.Saris: J. Appl. Phys.70 (1991) 3636. 10.1063/1.349211Search in Google Scholar

[38] R.Pretorius, T.K.Marais, C.C.Theron: Mater. Sci. Eng., R10 (1993) 1.Search in Google Scholar

[39] K.Bhanumurthy, G.B.Kale, S.P.Garg: Trans. Ind. Inst. Metals48 (1995) 193.Search in Google Scholar

[40] K.C.Hari Kumar, I.Ansara, P.Wollants, L.Delaey: Z. Metallkd.87 (1996) 666.Search in Google Scholar

[41] C.Colinet, A.Pasturel, K.H.J.Buschow: J. Alloys Compd.247 (1997) 15. 10.1016/S0925-8388(96)02590-XSearch in Google Scholar

[42] G.Ghosh: Acta Mater.55 (2007) 3347. 10.1016/j.actamat.2007.01.037Search in Google Scholar

[43] L.Kaufman, H.Bernstein: Computer calculations of phase diagrams, Academy Press, New York (1970).Search in Google Scholar

[44] N.Saunders, A.P.Miodownik: CALPHAD (Calculation of Phase Diagrams): A comprehensive guide, 1st ed., Pergamon Press, New York (1998).Search in Google Scholar

[45] A.T.Dinsdale: CALPHAD15 (1991) 317. 10.1016/0364-5916(91)90030-NSearch in Google Scholar

[46] L.Boltzmann: Annal. Phys.53 (1894) 959. 10.1002/andp.18942891315Search in Google Scholar

[47] C.Matano: Jpn. J. Phys.8 (1933) 109.Search in Google Scholar

[48] T.Heumann: Z. Phys. Chem.201 (1952) 168.10.1515/zpch-1952-20114Search in Google Scholar

[49] R.W.Balluffi: Acta Metall.8 (1960) 871. 10.1016/0001-6160(60)90154-1Search in Google Scholar

[50] P.Villars, L.D.Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, vol. 2, ASM, Metals Park, Ohio (1985).Search in Google Scholar

[51] W.B.Krull, R.W.Newman: J. Appl. Crystall.3 (1970) 519. 10.1107/S0021889870006787Search in Google Scholar

[52] M.A.Dayananda: Diffus. Defect Data, Pt. A95–98 (1993) 521.Search in Google Scholar

[53] C.Wagner: Acta Metall.17 (1969) 99. 10.1016/0001-6160(69)90131-XSearch in Google Scholar

[54] R.C.Ecob, J.V.Bee, B.Ralph: Phys. Status Solidi A52 (1979) 201. 10.1002/pssa.2210520121Search in Google Scholar

[55] J.Y.Brun, S.Hamar-Thibault, C.Allibert: Z. Metallkd.74 (1983) 525.Search in Google Scholar

[56] N.Karlsson: J. Inst. Met.79 (1951) 391.Search in Google Scholar

[57] F.Sauer, V.Freise: Z. Electrochem.66 (1962) 353.Search in Google Scholar

[58] L.D.Hall: J. Chem. Phys.21 (1953) 87. 10.1063/1.1698631Search in Google Scholar

[59] H.Mehrer: Diffusion in Solids, Springer-Verlag, Berlin (2007).10.1007/978-3-540-71488-0Search in Google Scholar

[60] S.Nagarjuna, M.Srinivas, K.Balasubramanian, D.S.Sarma: Mater. Sci. Eng. A259 (1999) 34. 10.1016/S0921-5093(98)00882-XSearch in Google Scholar

[61] W.F.Gale, T.C.Totemeier: Smithells Metals Reference Book, chap. Diffusion, 8th ed., Butterworth, Oxford (2004).Search in Google Scholar

[62] A.D.Le Claire: Phil. Mag.7 (1962) 141. 10.1080/14786436208201866Search in Google Scholar

[63] A.D.Le Claire: in: H.Eyring, D.Henderson, W.Jost (Eds.), Physical Chemistry – An Advanced Treatise, vol. X, Academic Press, New York and London (1970) 261330.Search in Google Scholar

[64] G.Neumann, C.Tuijn: Self Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, vol. 14 of Pergamon Materials Series, Elsevier Ltd. (2009).Search in Google Scholar

[65] C.Zener: J. Appl. Phys.22 (1951) 372. 10.1063/1.1699967Search in Google Scholar

[66] R.A.Swalin: J. Appl. Phys.27 (1956) 544. 10.1063/1.1722421Search in Google Scholar

[67] D.Beke, T.Geszti, G.Erdelyi: Z. Metallkd.68 (1977) 444.Search in Google Scholar

[68] D.Lazarus: Phys. Rev.93 (1954) 973. 10.1103/PhysRev.93.973Search in Google Scholar

[69] J.Pelleg: Acta Metall.14 (1966) 229. 10.1016/0001-6160(66)90306-3Search in Google Scholar

Received: 2010-9-15
Accepted: 2011-12-3
Published Online: 2013-06-11
Published in Print: 2012-06-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Diffusion characteristics in the Cu–Ti system
  5. Hydrogen permeability with dislocation in low carbon, aluminium-killed, enamel-grade steels
  6. Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting
  7. Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests
  8. Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel
  9. The reoptimization of the binary Se–Te system
  10. Phase diagram of the Sm–Dy–Fe ternary system
  11. Thermophysical properties of solid phase Ti-6Al-4V alloy over a wide temperature range
  12. Determination of mechanical properties by nanoindentation in the case of viscous materials
  13. Mechanical properties and biodegradable behavior of Mg–6%Zn–Ca3(PO4)2 metal matrix composites in Ringer's solution
  14. Effect of Ti addition on the wettability of Al–B4C metal matrix composites
  15. Effect of pH on structure, morphology and optical properties of nanosized cupric oxide prepared by a simple hydrolysis method
  16. Metal-oxide-modified nanostructured carbon application as novel adsorbents for chromate ion removal from water
  17. Biological evaluation of micro-nanoporous layer on Ti–Ag alloy for dental implant
  18. Design of damage tolerance in high-strength steels
  19. Creep modeling and creep life estimation of Gr.91
  20. Influence of the layer architecture of DLC coatings on their wear and corrosion resistance
  21. Potential of mechanical surface treatment for mould and die production
  22. Short Communications
  23. Discussion of defect analysis of a Ti-6Al-4V alloy forging ring
  24. DGM News
  25. DGM News
Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110685/html
Scroll to top button