Home Mechanical properties and biodegradable behavior of Mg–6%Zn–Ca3(PO4)2 metal matrix composites in Ringer's solution
Article
Licensed
Unlicensed Requires Authentication

Mechanical properties and biodegradable behavior of Mg–6%Zn–Ca3(PO4)2 metal matrix composites in Ringer's solution

  • Jun Zhao , Kun Yu , Liangjian Chen , Shaojun Li , Yanan Hu and Lu Lei
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The purpose of this study is to investigate the mechanical properties of Mg–6%Zn–Ca3(PO4)2 composite and evaluate its biodegradable behavior in Ringer's solution. The Mg–6%Zn alloy with 5%, 10% and 15% addition of Ca3(PO4)2 as reinforcements are produced through a powder-metallurgy sinter method and their corrosion properties are tested. The results show that the mechanical properties of the Mg–6%Zn–Ca3(PO4)2 composites are adjustable by the addition and particle distributions of Ca3(PO4)2. The Mg–6%Zn–5%, 10%Ca3(PO4)2 composites obtain properties including density, Young's modulus, and strength similar to natural bone. The Mg matrix, Mg7Zn3 phase, and Ca3(PO4)2 are identified in the experimental composite. Immersion and electrochemical corrosion tests reveal that 5% and 10% addition of Ca3(PO4)2 particles in the Mg–6%Zn alloy exhibit acceptable corrosion resistance in Ringer's solution.


* Correspondence address Dr. Kun YU School of Mater. Sci. & End., Central South University, Changsha 410083 P.R. China Tel.: 86-731-88879341 Fax: 86-731-88876692 E-mail:

References

[1] R.Zeng, W.Dietzel, F.Witte, N.Hort, C.Blawert: Adv. Eng. Mater.10 (2008) B3. 10.1002/adem.200800035Search in Google Scholar

[2] M.Niinomi: Met. Mater. Trans. A33 (2002) 477. 10.1007/s11661-002-0109-2Search in Google Scholar

[3] M.P.Staiger, A.M.Pietak, J.Huadmai, G.Dias: Biomaterials27 (2006) 1728. 10.1016/j.biomaterials.2005.10.003Search in Google Scholar

[4] Z.J.Li, X.N.Gu, S.Q.Lou, Y.Zheng: Biomaterials29 (2008) 1329. 10.1016/j.biomaterials.2007.12.021Search in Google Scholar

[5] M.B.Kannan, R.K.S.Raman: Biomaterials29 (2008) 2306. 10.1016/j.biomaterials.2008.02.003Search in Google Scholar

[6] Q.M.Peng, Y.D.Huang, L.Zhou, N.Hort, K.U.Kainer: Biomaterials31 (2010) 398. 10.1016/j.biomaterials.2009.09.065Search in Google Scholar

[7] F.Witte, F.Feyerabend, P.Maier, J.Fischer, M.Stormer, C.Blawert: Biomaterials28 (2007) 2163. 10.1016/j.biomaterials.2006.12.027Search in Google Scholar

[8] P.A.Revell, E.Damien, X.S.Zhang, P.Evans, C.R.Howlett: Key Eng. Mater.254–256 (2004) 447. 10.4028/www.scientific.net/KEM.254-256.447Search in Google Scholar

[9] N.Ö.Engin. C.Taş: J. Amer. Cer. Soc.83 (2004) 1581. 10.1111/j.1151-2916.2000.tb01434.xSearch in Google Scholar

[10] H.Koelmans: J. Phys. Chem. Sol.11 (1959) 172. 10.1016/0022-3697(59)90055-1Search in Google Scholar

[11] S.X.Zhang, X.N.Zhang, C.L.Zhao, J.A.Li, Y.Song, C.Y.Xie: Acta Biomater.6 (2010) 626. 10.1016/j.actbio.2009.06.028Search in Google Scholar

[12] Y.Xin, T.Hu, P.K.Chu: Acta Biomater.7 (2011) 1452. 10.1016/j.actbio.2010.12.004Search in Google Scholar

[13] http://www.whonamedit.com/synd.cfm/2119.html.Search in Google Scholar

[14] K.James, M.D.Weaver: J. Bone and Joint Surgery48 (1966) 273.Search in Google Scholar

[15] L.Gibson, M.Ashby: Cellular solids, Structure and properties, Pergamon Press, Sydney (1988).Search in Google Scholar

[16] G.L.Makar, J.Kruger: Inter. Mater. Rev.38 (1993) 138.Search in Google Scholar

[17] T.G.Bent, E.Barth, T.Albrektsson, H.Ronningen, L.F.Solheim, H.Wie: Eur. J. Oral Sciences96 (2007) 143.Search in Google Scholar

[18] M.T.Fulmer, I.C.Ison, C.R.Hankermayer, B.R.Constantz, J.Ross: Biomaterials23 (2002) 751. 10.1016/S0142-9612(01)00180-6Search in Google Scholar

[19] G.L.Song: Corrosion Science49 (2007) 1696. 10.1016/j.corsci.2007.01.001Search in Google Scholar

[20] F.Wittea, J.Fischer, J.Nellesen, H.A.Crostack, V.Kaese, A.K.Pisch: Biomaterials27 (2006) 1013. 10.1016/j.biomaterials.2005.07.037Search in Google Scholar PubMed

[21] D.W.MüllerM.L.Nascimento, M.Zeddies, M.Córsico, L.M.Gassa, M.A.F.L.Mele: Mater. Res.10 (2007) 1. 10.1590/S1516-14392007000100002Search in Google Scholar

Received: 2010-10-25
Accepted: 2011-11-25
Published Online: 2013-06-11
Published in Print: 2012-06-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Diffusion characteristics in the Cu–Ti system
  5. Hydrogen permeability with dislocation in low carbon, aluminium-killed, enamel-grade steels
  6. Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting
  7. Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests
  8. Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel
  9. The reoptimization of the binary Se–Te system
  10. Phase diagram of the Sm–Dy–Fe ternary system
  11. Thermophysical properties of solid phase Ti-6Al-4V alloy over a wide temperature range
  12. Determination of mechanical properties by nanoindentation in the case of viscous materials
  13. Mechanical properties and biodegradable behavior of Mg–6%Zn–Ca3(PO4)2 metal matrix composites in Ringer's solution
  14. Effect of Ti addition on the wettability of Al–B4C metal matrix composites
  15. Effect of pH on structure, morphology and optical properties of nanosized cupric oxide prepared by a simple hydrolysis method
  16. Metal-oxide-modified nanostructured carbon application as novel adsorbents for chromate ion removal from water
  17. Biological evaluation of micro-nanoporous layer on Ti–Ag alloy for dental implant
  18. Design of damage tolerance in high-strength steels
  19. Creep modeling and creep life estimation of Gr.91
  20. Influence of the layer architecture of DLC coatings on their wear and corrosion resistance
  21. Potential of mechanical surface treatment for mould and die production
  22. Short Communications
  23. Discussion of defect analysis of a Ti-6Al-4V alloy forging ring
  24. DGM News
  25. DGM News
Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110686/html
Scroll to top button