Startseite Phase diagram of the Sm–Dy–Fe ternary system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Phase diagram of the Sm–Dy–Fe ternary system

  • Bowen Wang , Yulan Zhu , Junqiu Dai , Ling Weng , Wenmei Huang und Yanming Hao
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The isothermal section at 800°C and vertical sections of SmFe2–DyFe2 and (Sm0.86Dy0.14) Fex (1.6 ≤ x ≤ 2.4) in the Sm–Dy–Fe system were determined by using optical microscopy, X-ray diffraction analysis, electron probe microanalysis, and differential thermal analysis techniques. The isothermal section possesses 6 single-phase regions, 7 two-phase regions, and 3 three-phase regions. There are five intermetallic phases: (Sm, Dy) Fe2, (Sm, Dy) Fe3, (Sm, Dy)6Fe23, Th2Zn17-type (Sm, Dy)2Fe17, and Th2Ni17-type (Sm, Dy)2Fe17. No Sm6Fe23 and (Sm, Dy)2Fe7 phases exist in the ternary system. The vertical section of SmFe2–DyFe2 in the Sm–Dy–Fe system contains 2 single-phase regions, 2 two-phase regions, and 1 three-phase region. Investigation of the vertical section of (Sm0.86Dy0.14) Fex (1.6 ≤ x ≤ 2.4) indicates that it consists of 2 single-phase regions, 5 two-phase regions, and 1 three-phase region.


* Correspondence address Prof. Bowen Wang, School of electrical Engineering, Hebei University of Technology No. 8, Guangrong Road, Tianjin, 300130, China Tel.: +862260204363 Fax: +862260204409 E-mail:

References

[1] J.M.D.Coey, H.Sun: J. Magn. Magn. Mater.87 (1990) L251. 10.1016/0304-8853(90)90756-GSuche in Google Scholar

[2] T.Iriyama, K.Kobayashi, N.Imaoka, T.Fukuda, H.Kato, Y.Nakagawa: IEEE Trans. Magn.28 (1992) 2326. 10.1109/20.179482Suche in Google Scholar

[3] A.E.Clark, H.S.Belson: Phys. Rev. B5 (1972) 3642. 10.1103/PhysRevB.5.3642Suche in Google Scholar

[4] A.E.Clark, Magnetostrictive rare earth–Fe2 compounds, in: E.P.Wohlfarth (Ed.), Ferromagnetic Materials, Vol. 1, North Holland, 1980, p. 531.10.1016/S1574-9304(05)80122-1Suche in Google Scholar

[5] B.W.Wang, W.J.Li, J.S.Song, B.K.Min: J. Appl. Phys.91 (2002) 9246. 10.1063/1.1473227Suche in Google Scholar

[6] B.W.Wang, Y.M.Hao, S.C.Busbridge, Z.J.Guo, Y.X.Li: J. Magn. Magn. Mater.246 (2002) 270. 10.1016/S0304-8853(02)00068-9Suche in Google Scholar

[7] F.Yang, W.Liu, S.Q.Li, X.K.Lv, J.Li, Z.D.Zhang: Mater. Lett.64 (2010) 608. 10.1016/j.matlet.2009.12.017Suche in Google Scholar

[8] V.Hari Babu, G.Markandeyulu, A.Subrahmanyam: Appl. Phys. Lett.90 (2007) 252513. 10.1063/1.2751124Suche in Google Scholar

[9] F.Yang, W.Liu, X.K.Lv, B.Li, S.Q.Li, J.Li, Z.D.Zhang: J. Magn. Magn. Mater.322 (2010) 2095. 10.1016/j.jmmm.2010.01.039Suche in Google Scholar

[10] H.T.Savage, A.E.Clark, J.M.Powers: IEEE Trans. Magn.11 (1975) 1355. 10.1109/TMAG.1975.1058791Suche in Google Scholar

[11] A.E.Clark, R.Abbundi, W.R.Gillmor: IEEE Trans. Magn.14 (1978) 542. 10.1109/TMAG.1978.1059879Suche in Google Scholar

[12] J.W.Xie, D.Fort, J.S.Abell: J. Alloys Comp.366 (2004) 241. 10.1016/S0925-8388(03)00668-6Suche in Google Scholar

[13] T.B.Massalski, P.R.Subramanian, H.Okamoto, L.Kacprzak: Binary Alloys Phase Diagrams, ASM, Materials Park, OH, 1990.Suche in Google Scholar

[14] P.Villars, L.D.Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, Materials Park, OH, 1983.Suche in Google Scholar

[15] H.Samata, K.Sakamoto, S.Yashiro, Y.Nagata: J. Cryst. Growth229 (2001) 482. 10.1016/S0022-0248(01)01213-1Suche in Google Scholar

[16] H.Samata, Y.Satoh, Y.Nagata, T.Uchida, M.Kai, M.D.Lan: Jpn. J. Appl. Phys.36 (1997) L476. 10.1143/JJAP.36.L476Suche in Google Scholar

[17] A.Teresiak, M.Kubis, N.Mattern, K.-H.Müller, B.Wolf: J. Alloys Comp.319 (2001) 168. 10.1016/S0925-8388(01)00899-4Suche in Google Scholar

[18] B.-G.Shen, Z.-H.Cheng, H.-Y.Gong, B.Liang, Q.-W.Yan, W.-S.Zhan: Solid State Commun.95 (1995) 813. 10.1016/0038-1098(95)00110-7Suche in Google Scholar

[19] E.-Th.Hening, B.Grieb: Phase diagrams for permanent magnet materials, in: G.J.Long, F.Grandjean (Eds.), Supermagnets, Hard Magnetic Materials, Kluwer Academic Publishers, London, (1990) p. 171.Suche in Google Scholar

[20] B.W.Wang, W.Liu, W.J.Feng, Y.M.Hao, Y.X.Li: Trans. Nonferrrous Metals Soc. of China12 (2002) 850.Suche in Google Scholar

[21] A.S.Van Der Goat, K.H.J.Buschow: J. Less-Common Met.21 (1970) 151. 10.1016/0022-5088(70)90113-XSuche in Google Scholar

[22] B.W.Wang, Z.D.Zhang, S.L.Tang, X.G.Zhao, X.M.Jin: J. Alloys Comp.245 (1996) 153. 10.1016/S0925-8388(96)02498-XSuche in Google Scholar

Received: 2011-1-10
Accepted: 2011-11-16
Published Online: 2013-06-11
Published in Print: 2012-06-01

© 2012, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. Diffusion characteristics in the Cu–Ti system
  5. Hydrogen permeability with dislocation in low carbon, aluminium-killed, enamel-grade steels
  6. Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting
  7. Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests
  8. Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel
  9. The reoptimization of the binary Se–Te system
  10. Phase diagram of the Sm–Dy–Fe ternary system
  11. Thermophysical properties of solid phase Ti-6Al-4V alloy over a wide temperature range
  12. Determination of mechanical properties by nanoindentation in the case of viscous materials
  13. Mechanical properties and biodegradable behavior of Mg–6%Zn–Ca3(PO4)2 metal matrix composites in Ringer's solution
  14. Effect of Ti addition on the wettability of Al–B4C metal matrix composites
  15. Effect of pH on structure, morphology and optical properties of nanosized cupric oxide prepared by a simple hydrolysis method
  16. Metal-oxide-modified nanostructured carbon application as novel adsorbents for chromate ion removal from water
  17. Biological evaluation of micro-nanoporous layer on Ti–Ag alloy for dental implant
  18. Design of damage tolerance in high-strength steels
  19. Creep modeling and creep life estimation of Gr.91
  20. Influence of the layer architecture of DLC coatings on their wear and corrosion resistance
  21. Potential of mechanical surface treatment for mould and die production
  22. Short Communications
  23. Discussion of defect analysis of a Ti-6Al-4V alloy forging ring
  24. DGM News
  25. DGM News
Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110680/html?lang=de
Button zum nach oben scrollen