Phase diagram of the Sm–Dy–Fe ternary system
-
Bowen Wang
, Yulan Zhu , Junqiu Dai , Ling Weng , Wenmei Huang und Yanming Hao
Abstract
The isothermal section at 800°C and vertical sections of SmFe2–DyFe2 and (Sm0.86Dy0.14) Fex (1.6 ≤ x ≤ 2.4) in the Sm–Dy–Fe system were determined by using optical microscopy, X-ray diffraction analysis, electron probe microanalysis, and differential thermal analysis techniques. The isothermal section possesses 6 single-phase regions, 7 two-phase regions, and 3 three-phase regions. There are five intermetallic phases: (Sm, Dy) Fe2, (Sm, Dy) Fe3, (Sm, Dy)6Fe23, Th2Zn17-type (Sm, Dy)2Fe17, and Th2Ni17-type (Sm, Dy)2Fe17. No Sm6Fe23 and (Sm, Dy)2Fe7 phases exist in the ternary system. The vertical section of SmFe2–DyFe2 in the Sm–Dy–Fe system contains 2 single-phase regions, 2 two-phase regions, and 1 three-phase region. Investigation of the vertical section of (Sm0.86Dy0.14) Fex (1.6 ≤ x ≤ 2.4) indicates that it consists of 2 single-phase regions, 5 two-phase regions, and 1 three-phase region.
References
[1] J.M.D.Coey, H.Sun: J. Magn. Magn. Mater.87 (1990) L251. 10.1016/0304-8853(90)90756-GSuche in Google Scholar
[2] T.Iriyama, K.Kobayashi, N.Imaoka, T.Fukuda, H.Kato, Y.Nakagawa: IEEE Trans. Magn.28 (1992) 2326. 10.1109/20.179482Suche in Google Scholar
[3] A.E.Clark, H.S.Belson: Phys. Rev. B5 (1972) 3642. 10.1103/PhysRevB.5.3642Suche in Google Scholar
[4] A.E.Clark, Magnetostrictive rare earth–Fe2 compounds, in: E.P.Wohlfarth (Ed.), Ferromagnetic Materials, Vol. 1, North Holland, 1980, p. 531.10.1016/S1574-9304(05)80122-1Suche in Google Scholar
[5] B.W.Wang, W.J.Li, J.S.Song, B.K.Min: J. Appl. Phys.91 (2002) 9246. 10.1063/1.1473227Suche in Google Scholar
[6] B.W.Wang, Y.M.Hao, S.C.Busbridge, Z.J.Guo, Y.X.Li: J. Magn. Magn. Mater.246 (2002) 270. 10.1016/S0304-8853(02)00068-9Suche in Google Scholar
[7] F.Yang, W.Liu, S.Q.Li, X.K.Lv, J.Li, Z.D.Zhang: Mater. Lett.64 (2010) 608. 10.1016/j.matlet.2009.12.017Suche in Google Scholar
[8] V.Hari Babu, G.Markandeyulu, A.Subrahmanyam: Appl. Phys. Lett.90 (2007) 252513. 10.1063/1.2751124Suche in Google Scholar
[9] F.Yang, W.Liu, X.K.Lv, B.Li, S.Q.Li, J.Li, Z.D.Zhang: J. Magn. Magn. Mater.322 (2010) 2095. 10.1016/j.jmmm.2010.01.039Suche in Google Scholar
[10] H.T.Savage, A.E.Clark, J.M.Powers: IEEE Trans. Magn.11 (1975) 1355. 10.1109/TMAG.1975.1058791Suche in Google Scholar
[11] A.E.Clark, R.Abbundi, W.R.Gillmor: IEEE Trans. Magn.14 (1978) 542. 10.1109/TMAG.1978.1059879Suche in Google Scholar
[12] J.W.Xie, D.Fort, J.S.Abell: J. Alloys Comp.366 (2004) 241. 10.1016/S0925-8388(03)00668-6Suche in Google Scholar
[13] T.B.Massalski, P.R.Subramanian, H.Okamoto, L.Kacprzak: Binary Alloys Phase Diagrams, ASM, Materials Park, OH, 1990.Suche in Google Scholar
[14] P.Villars, L.D.Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, Materials Park, OH, 1983.Suche in Google Scholar
[15] H.Samata, K.Sakamoto, S.Yashiro, Y.Nagata: J. Cryst. Growth229 (2001) 482. 10.1016/S0022-0248(01)01213-1Suche in Google Scholar
[16] H.Samata, Y.Satoh, Y.Nagata, T.Uchida, M.Kai, M.D.Lan: Jpn. J. Appl. Phys.36 (1997) L476. 10.1143/JJAP.36.L476Suche in Google Scholar
[17] A.Teresiak, M.Kubis, N.Mattern, K.-H.Müller, B.Wolf: J. Alloys Comp.319 (2001) 168. 10.1016/S0925-8388(01)00899-4Suche in Google Scholar
[18] B.-G.Shen, Z.-H.Cheng, H.-Y.Gong, B.Liang, Q.-W.Yan, W.-S.Zhan: Solid State Commun.95 (1995) 813. 10.1016/0038-1098(95)00110-7Suche in Google Scholar
[19] E.-Th.Hening, B.Grieb: Phase diagrams for permanent magnet materials, in: G.J.Long, F.Grandjean (Eds.), Supermagnets, Hard Magnetic Materials, Kluwer Academic Publishers, London, (1990) p. 171.Suche in Google Scholar
[20] B.W.Wang, W.Liu, W.J.Feng, Y.M.Hao, Y.X.Li: Trans. Nonferrrous Metals Soc. of China12 (2002) 850.Suche in Google Scholar
[21] A.S.Van Der Goat, K.H.J.Buschow: J. Less-Common Met.21 (1970) 151. 10.1016/0022-5088(70)90113-XSuche in Google Scholar
[22] B.W.Wang, Z.D.Zhang, S.L.Tang, X.G.Zhao, X.M.Jin: J. Alloys Comp.245 (1996) 153. 10.1016/S0925-8388(96)02498-XSuche in Google Scholar
© 2012, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Diffusion characteristics in the Cu–Ti system
- Hydrogen permeability with dislocation in low carbon, aluminium-killed, enamel-grade steels
- Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting
- Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests
- Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel
- The reoptimization of the binary Se–Te system
- Phase diagram of the Sm–Dy–Fe ternary system
- Thermophysical properties of solid phase Ti-6Al-4V alloy over a wide temperature range
- Determination of mechanical properties by nanoindentation in the case of viscous materials
- Mechanical properties and biodegradable behavior of Mg–6%Zn–Ca3(PO4)2 metal matrix composites in Ringer's solution
- Effect of Ti addition on the wettability of Al–B4C metal matrix composites
- Effect of pH on structure, morphology and optical properties of nanosized cupric oxide prepared by a simple hydrolysis method
- Metal-oxide-modified nanostructured carbon application as novel adsorbents for chromate ion removal from water
- Biological evaluation of micro-nanoporous layer on Ti–Ag alloy for dental implant
- Design of damage tolerance in high-strength steels
- Creep modeling and creep life estimation of Gr.91
- Influence of the layer architecture of DLC coatings on their wear and corrosion resistance
- Potential of mechanical surface treatment for mould and die production
- Short Communications
- Discussion of defect analysis of a Ti-6Al-4V alloy forging ring
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Diffusion characteristics in the Cu–Ti system
- Hydrogen permeability with dislocation in low carbon, aluminium-killed, enamel-grade steels
- Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting
- Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests
- Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel
- The reoptimization of the binary Se–Te system
- Phase diagram of the Sm–Dy–Fe ternary system
- Thermophysical properties of solid phase Ti-6Al-4V alloy over a wide temperature range
- Determination of mechanical properties by nanoindentation in the case of viscous materials
- Mechanical properties and biodegradable behavior of Mg–6%Zn–Ca3(PO4)2 metal matrix composites in Ringer's solution
- Effect of Ti addition on the wettability of Al–B4C metal matrix composites
- Effect of pH on structure, morphology and optical properties of nanosized cupric oxide prepared by a simple hydrolysis method
- Metal-oxide-modified nanostructured carbon application as novel adsorbents for chromate ion removal from water
- Biological evaluation of micro-nanoporous layer on Ti–Ag alloy for dental implant
- Design of damage tolerance in high-strength steels
- Creep modeling and creep life estimation of Gr.91
- Influence of the layer architecture of DLC coatings on their wear and corrosion resistance
- Potential of mechanical surface treatment for mould and die production
- Short Communications
- Discussion of defect analysis of a Ti-6Al-4V alloy forging ring
- DGM News
- DGM News