Beyond imaging: on the quantitative analysis of tomographic volume data
-
Claudia Redenbach
, Alexander Rack , Katja Schladitz , Oliver Wirjadi und Michael Godehardt
Abstract
Tomographic techniques are a valuable analytical tool as they deliver 3D spatial information on a given specimen. Both computed tomography with high spatial resolution and quantitative volume image analysis have made enormous progress during the last decade. In particular for materials and natural science applications the combination of high-resolution three-dimensional imaging and the subsequent image analysis exploiting the fully preserved spatial structural information yield new and exciting insights.
In this paper, field-tested and up-to-date methods for tomographic imaging of microstructures, for processing and for quantitatively analysing three-dimensional images are reviewed. By selected applications from materials research, we shall underline the importance of volume image analysis as a crucial step in order to go beyond the images: it allows determination of spatial cross-correlations between different constituents of a specimen, investigation of orientations or derivation of statistically relevant information such as object size distributions. The core part of this work consists, besides the exemple application scenarios, in the processing chain, the tools and methods used.
References
[1] D.Blavette, A.Bostel, J.M.Sarrau, B.Deconihout, A.Menand: Nature363 (1993) 432.Suche in Google Scholar
[2] A.Kubis, G.Shiflet, R.Hull, D.Dunn: Metallurg. Mater. Trans. A35 (2004) 1935.Suche in Google Scholar
[3] S.R.Stock: MicroComputed Tomography: Methodology and Applications. CRC Press, Boca Raton (2008).Suche in Google Scholar
[4] J.Banhart (Ed.): Advanced Tomographic Methods in Materials Research and Engineering. Oxford University Press (2008).10.1093/acprof:oso/9780199213245.001.0001Suche in Google Scholar
[5] J.Hsieh: Computed Tomography: Principles, Design, Artifacts and Recent Advances. SPIE Press, Bellingham, WA, 2nd edition (2009).Suche in Google Scholar
[6] A.C.Kak, M.Slaney: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988).Suche in Google Scholar
[7] M.Feser, J.Gelb, H.Chang, H.Cui, F.Duewer, S.H.Lau, A.Tkachuk, W.Yun: Meas. Sci. Tech.19 (2008) 094001.Suche in Google Scholar
[8] P.Cloetens, W.Ludwig, J.Baruchel, D.Van Dyck, J.Van Landuyt, J.P.Guigay, M.Schlenker: Appl. Phys. Lett.75 (1999) 2912.Suche in Google Scholar
[9] D.Chapman, W.Thomlinson, R.E.Johnston, D.Washburn, E.Pisano, N.Gmür, Z.Zhong, R.Menk, F.Arfelli, D.Sayers: Phys. Med. Biol.42 (1997) 2015.Suche in Google Scholar
[10] T.Weitkamp, A.Diaz, C.David, F.Pfeiffer, M.Stampanoni, P.Cloetens, E.Ziegler: Opt. Express13 (2005) 6296.Suche in Google Scholar
[11] R.A.Brooks, G.Di Chiro: Med. Phys.3 (1976) 237.Suche in Google Scholar
[12] M.Di Michiel, J.M.Merino, D.Fernandez-Carreiras, T.Buslaps, V.Honkimäki, P.Falus, T.Martins, O.Svensson: Rev. Sci. Instrum.76 (2005) 043702.Suche in Google Scholar
[13] A.Rack, F.García-Moreno, C.Schmitt, O.Betz, A.Cecilia, A.Ershov, T.Rack, J.Banhart, S.Zabler: J. X-ray Sci. Tech.18 (2010) 429.Suche in Google Scholar
[14] A.King, G.Johnson, D.Engelberg, W.Ludwig, J.Marrow: Science321 (2008) 382.Suche in Google Scholar
[15] G.Harding, J.Kosanetzky: Nucl. Instr. Meth. in Phys. Res. A280 (1989) 517.Suche in Google Scholar
[16] L.Helfen, A.Myagotin, A.Rack, P.Pernot, P.Mikulík, M.Di Michiel, T.Baumbach: Phys. Status Solidi A204 (2007) 2760.Suche in Google Scholar
[17] P.Bleuet, P.Cloetens, P.Gergaud, D.Mariolle, N.Chevalier, R.Tucoulou, J.Susini, A.Chabli: Rev. Sci. Instrum.80 (2009) 056101.Suche in Google Scholar
[18] A.M.Korsunsky, N.Baimpas, X.Song, J.Belnoue, F.Hofmann, B.Abbey, M.Xie, J.Andrieux, T.Buslaps, T.Khin Neo: Acta Mater.59 (2011) 2501.Suche in Google Scholar
[19] S.R.Stock, F.De Carlo, J.D.Almer: J. Struct. Biol.161 (2008) 144.Suche in Google Scholar
[20] N.Zoeger, C.Streli, P.Wobrauscheck, C.Jokubonis, G.Pepponi, P.Roschger, J.Hofstaetter, A.Berzelanovich, D.Wegrzynek, E.Chinea-Cano, A.Markowicz, R.Simon, G.Falkenberg: X-ray Spectrom.37 (2008) 3.Suche in Google Scholar
[21] M.Dierolf, A.Menzel, P.Thibault, P.Schneider, C.M.Kewish, R.Wepf, O.Bunk, F.Pfeiffer: Nature467 (2010) 436.Suche in Google Scholar
[22] A.Rack, S.Zabler, B.R.Müller, H.Riesemeier, G.Weidemann, A.Lange, J.Goebbels, M.Hentschel, W.Görner: Nucl. Instr. & Meth. in Phys. Res. A586 (2008) 327.Suche in Google Scholar
[23] O.Wirjadi: Models and Algorithms for Image-Based Analysis of Microstructures. PhD thesis, Technical University Kaiserslautern (2009).Suche in Google Scholar
[24] J.Ohser, W.Nagel, K.Schladitz: Image Anal. Stereol.28 (2009) 77.Suche in Google Scholar
[25] J.Ohser, K.Schladitz: 3d Images of Materials Structures – Processing and Analysis. Wiley VCH, Weinheim (2009).10.1002/9783527628308Suche in Google Scholar
[26] J.Ohser, W.Nagel, K.Schladitz, in: K.R.Mecke, D.Stoyan, (Eds.), Morphology of Condensed Matter, volume 600 of Lecture Notes in Physics, Springer-Verlag, Berlin (2002) 275.10.1007/3-540-45782-8_12Suche in Google Scholar
[27] N.R.Pal, S.K.Pal: Pattern Recogn, 26 (1993) 1277.10.1016/0031-3203(93)90135-JSuche in Google Scholar
[28] O.Wirjadi: Survey of 3d image segmentation methods, Technical Report 123, Fraunhofer ITWM, Kaiserslautern (2007).Suche in Google Scholar
[29] M.Sezgin, B.Sankur: J. Electron. Imaging13 (2004) 146.Suche in Google Scholar
[30] N.Otsu: IEEE T. Syst. Man Cyb.9 (1979) 62.10.1109/TSMC.1979.4310076Suche in Google Scholar
[31] P.Soille: Morphological image analysis, Springer-Verlag (1999).10.1007/978-3-662-03939-7Suche in Google Scholar
[32] J.Ohser, C.Ferrero, O.Wirjadi, A.Kuznetsova, J.Düll, A.Rack: Int. J. Mater. Res.103 (2012) 184, 10.3139/146.110669Suche in Google Scholar
[33] C.R.Maurer, V.Raghavan: IEEE T. Pattern Anal.25 (2003) 265.Suche in Google Scholar
[34] L.Vincent, P.Soille: IEEE T. Pattern Anal.13 (1991) 583.Suche in Google Scholar
[35] F.B.Tek, A.G.Dempster, I.Kale, in: C.Ronse, L.Najman, and E.Decencire, (Eds.), Proc. Int. Symp. on Mathematical Morphology, volume 30 of Computational Imaging and Vision, Dordrecht, Springer-Verlag (2005) 441.Suche in Google Scholar
[36] M.Godehardt, K.Schladitz, in: Proceedings of the 9th European NDT Conference, Berlin (2006).Suche in Google Scholar
[37] D.Stoyan, W.S.Kendall, J.Mecke: Stochastic Geometry and Its Applications, Wiley, Chichester, 2nd edition (1995).Suche in Google Scholar
[38] J.Ohser, C.Redenbach, K.Schladitz: Image Anal. Stereol.28 (2009) 101.Suche in Google Scholar
[39] J.Freitag, F.Wilhelms, S.Kipfstuhl: J. Glaciol.50 (2004) 243.Suche in Google Scholar
[40] R.Hilfer, in: K. R.Mecke, D.Stoyan (Eds.), Statistical Physics and Spatial Statistics, volume 554 of Lecture Notes in Physics, Springer-Verlag, Heidelberg (2000) 203.Suche in Google Scholar
[41] H.Altendorf, D.Jeulin: Image Anal. Stereol.28 (2009) 143.Suche in Google Scholar
[42] M.Krause, J.M.Hausherr, B.Burgeth, C.Herrmann, W.Krenkel: J. Mater. Sci.45 (2010) 888.Suche in Google Scholar
[43] N.I.Fisher, T.Lewis, B.J.J.Embleton: Statistical analysis of spherical data. Cambridge University Press, Cambridge (1987).10.1017/CBO9780511623059Suche in Google Scholar
[44] S.Beucher: Image Vision Comput.25 (2007) 405.10.1016/j.imavis.2006.07.020Suche in Google Scholar
[45] P.Cloetens, W.Ludwig, E.Boller, L.Helfen, L.Salvo, R.Mache, M.Schlenker: Proc. SPIE4503 (2002) 82.Suche in Google Scholar
[46] K.Koch, J.Ohser, K.Schladitz: Adv. Appl. Prob.35 (2003) 603.Suche in Google Scholar
[47] A.Rack, L.Helfen, T.Baumbach, S.Kirste, J.Banhart, K.Schladitz, J.Ohser: J. Microscopy232 (2008) 282.Suche in Google Scholar
[48] L.Helfen, T.Baumbach, P.Cloetens, H.Stanzick, K.Schladitz, J.Banhart: Appl. Phys. Lett.86 (2005) 231907.Suche in Google Scholar
[49] A.Rack, H.-M.Helwig, A.Bütow, A.Rueda, B.Matijašević-Lux, L.Helfen, J.Goebbels, J.Banhart: Acta Mater.57 (2009) 4809.Suche in Google Scholar
[50] E.Parra-Denis, C.Barat, D.Jeulin, C.Ducottet: Mater. Charact.59 (2008) 338.Suche in Google Scholar
[51] I.Vecchio, K.Schladitz, G.Godehardt, M.Heneka, in: 3rd International Workshop: 3D Imaging, Analysis, Modeling and Simulation of Macroscopic Properties, Fontainebleau (2010).Suche in Google Scholar
[52] D.Jeulin, in: M.Bilodeau, F.Meyer, M.Schmitt (Eds.), Space, Structure and Randomness, volume 183 of Lecture Notes in Statistics, Springer-Verlag, New York (2005) 183.10.1007/0-387-29115-6Suche in Google Scholar
[53] H.Altendorf, D.Jeulin, in: 3rd International Workshop: 3D Imaging, Analysis, Modeling and Simulation of Macroscopic Properties, Fontainebleau (2010).Suche in Google Scholar
[54] C.Peyrega, D.Jeulin, C.Delisée, J.Malvestio: Image Anal. Stereol.28 (2009) 129.Suche in Google Scholar
[55] C.Redenbach, in: V. Capasso, G. Aletti, A. Micheletti (Eds.), Stereology and Image Analysis. Ecs10: Proc. 10th Europ. Conf. of ISS., volume 4 of The MIRIAM Project Series, ESCULAPIO Pub. Co., Bologna (2009).Suche in Google Scholar
[56] K.Schladitz, S.Peters, D.Reinel-Bitzer, A.Wiegmann, J.Ohser: Comp. Mater. Sci.38 (2006) 56.Suche in Google Scholar
© 2012, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Exploiting Contrast with Tomography
- Original Contributions
- 3D imaging of complex materials: the case of cement
- Neutron Bragg-edge mapping of weld seams
- 3D image analysis and stochastic modelling of open foams
- In-situ X-ray microtomography study of the movement of a granular material within a die
- Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens
- Numerical correction of X-ray detector backlighting
- X-ray phase contrast and fluorescence nanotomography for material studies
- Estimation of the probability of finite percolation in porous microstructures from tomographic images
- Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques
- Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping
- Fatigue induced deformation of taper connections in dental titanium implants
- Beyond imaging: on the quantitative analysis of tomographic volume data
- Damage fluctuations in creep deformed copper studied with synchrotron X-ray microtomography
- Neutron strain tomography using Bragg-edge transmission
- Three-dimensional registration of tomography data for quantification in biomaterials science
- Morpho-topological volume analysis of porous materials for nuclear applications
- People
- Professor Dr. rer. nat. Richard Wagner
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Exploiting Contrast with Tomography
- Original Contributions
- 3D imaging of complex materials: the case of cement
- Neutron Bragg-edge mapping of weld seams
- 3D image analysis and stochastic modelling of open foams
- In-situ X-ray microtomography study of the movement of a granular material within a die
- Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens
- Numerical correction of X-ray detector backlighting
- X-ray phase contrast and fluorescence nanotomography for material studies
- Estimation of the probability of finite percolation in porous microstructures from tomographic images
- Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques
- Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping
- Fatigue induced deformation of taper connections in dental titanium implants
- Beyond imaging: on the quantitative analysis of tomographic volume data
- Damage fluctuations in creep deformed copper studied with synchrotron X-ray microtomography
- Neutron strain tomography using Bragg-edge transmission
- Three-dimensional registration of tomography data for quantification in biomaterials science
- Morpho-topological volume analysis of porous materials for nuclear applications
- People
- Professor Dr. rer. nat. Richard Wagner
- DGM News
- DGM News