X-ray phase contrast and fluorescence nanotomography for material studies
-
Heikki Suhonen
, Feng Xu , Lukas Helfen , Claudio Ferrero , Pavel Vladimirov and Peter Cloetens
Abstract
The macroscopic properties of many materials are determined by structural features spanning a wide range of length scales. The nano-imaging endstation ID22NI of the European Synchrotron Radiation Facility is optimized for nanoscale imaging (X-ray focus size well below 100 nm) at high X-ray energy (17 – 29 keV), making it possible to study the interior of dense samples with a millimetric size. Computed tomography and computed laminography setups allow three dimensional imaging of a wide variety of samples, laminography being especially suited for non-destructive imaging of flat samples. The focused X-rays are used as a scanning probe for fluorescence tomography, providing sensitivity for elemental composition down to the ppm level. Projection microscopy with phase contrast is used for imaging the electron density in an extremely sensitive way. We demonstrate these capabilities by imaging a Be pebble. We found large scale cracks and nanoporosity (< 1 μm pores). Furthermore, beryllium oxide inclusions could be detected, ranging from 200 nm to several microns in size. Some of the smallest inclusions were located next to a small pore, indicating beryllium oxide formation after solidification of the structure.
References
[1] J.R.Heath: Acc. Chem. Res.32 (1999) 388. 10.1021/ar990059e10.1021/ar990059eSearch in Google Scholar
[2] L.Salvo, P.Cloetens, E.Maire, S.Zabler, J.J.Blandin, J.Y.Buffiere, W.Ludwig, E.Boller, D.Bellet, C.Josserond: Nucl. Instr. Meth. B200 (2003) 273. 10.1016/S0168-583X(02)01689-010.1016/S0168-583X(02)01689-0Search in Google Scholar
[3] C.G.Schroer, J.Meyer, M.Kuhlmann, B.Benner, T.F.Günzler, B.Lengeler, C.Rau, T.Weitkamp, A.Snigirev, I.Snigireva: Appl. Phys. Lett.81 (2002) 1527. 10.1063/1.150145110.1063/1.1501451Search in Google Scholar
[4] A.Borbély, P.Cloetens, E.Maire, G.Requena, in: F.A.Lasagni, A.F.Lasagni (Eds.), Advanced Structured Materials, Springer, Berlin, Heidelberg (2011) 151.10.1007/978-3-642-17782-8_7Search in Google Scholar
[5] K.J.Kim: Nucl. Instr. Meth. A246 (1986) 71. 10.1016/0168-9002(86)90048-310.1016/0168-9002(86)90048-3Search in Google Scholar
[6] G.Martinez-Criado, R.Tucoulou, P.Cloetens, P.Bleuet, S.Bohic, J.Cauzid, I.Kieffer, E.Kosior, S.Laboure, S.Petitgirard, A.Rack, J.Angel Sans, J.Segura-Ruiz, H.Suhonen, J.Susini, J.Villanova: J. Synch. Rad.19 (2012) in press. 10.1107/S090904951104249X10.1107/S090904951104249XSearch in Google Scholar PubMed
[7] http://www.esrf.eu/UsersAndScience/Experiments/Imaging/beamline-portfolio/CDR_UPBL04_future-ID16.pdf.Search in Google Scholar
[8] P.Bleuet, A.Simionovici, L.Lemelle, T.Ferroir, P.Cloetens, R.Tucoulou, J.Susini: Appl. Phys. Lett.92 (2008) 213111. 10.1063/1.292747610.1063/1.2927476Search in Google Scholar
[9] R.Barrett, R.Baker, P.Cloetens, Y.Dabin, C.Morawe, H.Suhonen, R.Tucoulou, A.Vivo, L.Zhang: Proc. SPIE (2011) 813904.10.1117/12.894735Search in Google Scholar
[10] P.Cloetens, W.Ludwig, J.Baruchel, D.Van Dyck, J.Van Landuyt, J.P.Guigay, M.Schlenker: Appl. Phys. Lett.75 (1999) 2912. 10.1063/1.12522510.1063/1.125225Search in Google Scholar
[11] M.Langer, P.Cloetens, J.P.Guigay, F.Peyrin: Med. Phys.35 (2008) 4556. 10.1118/1.297522410.1118/1.2975224Search in Google Scholar PubMed
[12] R.Mokso, P.Cloetens, E.Maire, W.Ludwig, J.Y.Buffière: Appl. Phys. Lett.90 (2007) 144104. 10.1063/1.271965310.1063/1.2719653Search in Google Scholar
[13] P.Bleuet, P.Cloetens, P.Gergaud, D.Mariolle, N.Chevalier, R.Tucoulou, J.Susini, A.Chabli: Rev. Sci. Instrum.80 (2009) 056101. 10.1063/1.311748910.1063/1.3117489Search in Google Scholar PubMed
[14] J.T.A.Jones, T.Hasell, X.Wu, J.Bacsa, K.E.Jelfs, M.Schmidtmann, S.Y.Chong, D.J.Adams, A.Trewin, F.Schiffman: Nature474 (2011) 367. 10.1038/nature1012510.1038/nature10125Search in Google Scholar PubMed
[15] K.Dzieciol, A.Borbély, F.Sket, A.Isaac, M.Di Michiel, P.Cloetens, Th.Buslaps, A.R.Pyzalla: Acta Mat.59 (2011) 671. 10.1016/j.actamat.2010.10.00310.1016/j.actamat.2010.10.003Search in Google Scholar
[16] G.Requena, P.Cloetens, W.Altendorfer, C.Poletti, D.Tolnai, F.Warchomicka, H.P.Degischer: Scripta Mater.61 (2009) 760. 10.1016/j.scriptamat.2009.06.02510.1016/j.scriptamat.2009.06.025Search in Google Scholar
[17] R.Ortega, P.Cloetens, G.Devès, A.Carmona, S.Bohic: PLoS ONE2 (2007) e925. 10.1371/journal.pone.000092510.1371/journal.pone.0000925Search in Google Scholar PubMed PubMed Central
[18] A.Carmona, G.Devès, S.Roudeau, P.Cloetens, S.Bohic, R.Ortega: ACS Chem. Neurosci.1 (2009) 194. 10.1021/cn900021z10.1021/cn900021zSearch in Google Scholar PubMed PubMed Central
[19] H.Palancher, R.Tucoulou, P.Bleuet, A.Bonnin, E.Welcomme, P.Cloetens: J. Appl. Crystallogr.44 (2011) 1111. 10.1107/S002188981102442310.1107/S0021889811024423Search in Google Scholar
[20] C.Mochales, A.Maerten, A.Rack, P.Cloetens, W.D.Mueller, P.Zaslansky, C.Fleck: Acta Biomat.7 (2011) 2994. 10.1016/j.actbio.2011.04.00710.1016/j.actbio.2011.04.007Search in Google Scholar PubMed
[21] L.Helfen, T.Baumbach, P.Mikulík, D.Kiel, P.Pernot, P.Cloetens, J.Baruchel: Appl. Phys. Lett.86 (2005) 071915. 10.1063/1.185473510.1063/1.1854735Search in Google Scholar
[22] L.Helfen, T.Baumbach, P.Cloetens, J.Baruchel: Appl. Phys. Lett.94 (2009) 104103. 10.1063/1.308923710.1063/1.3089237Search in Google Scholar
[23] F.Xu, L.Helfen, A.J.Moffat, G.Johnson, I.Sinclair, T.Baumbach: J. Synchrotron Radiat.17 (2010) 222. 10.1107/S090904951000151210.1107/S0909049510001512Search in Google Scholar PubMed PubMed Central
[24] L.Helfen, T.Morgeneyer, F.Xu, M.Mavrogordato, I.Sinclair, B.Schillinger, T.Baumbach: Int. J. Mater. Res., 103 (2012) 170. 10.3139/146.11066810.3139/146.110668Search in Google Scholar
[25] L.Helfen, A.Myagotin, P.Mikulík, P.Pernot, A.Voropaev, M.Elyyan, M.Di Michiel, J.Baruchel, T.Baumbach: Rev. Sci. Instrum.82 (2011) 063702. 10.1063/1.359656610.1063/1.3596566Search in Google Scholar PubMed
[26] M.Slaney, A.Kak: Principles of computerized tomographic imaging SIAM (1988).Search in Google Scholar
[27] R.Pieritz, J.Spino, P.Vladimirov, C.Ferrero: Int. J. Mater. Res., 103 (2012) 250. 10.3139/146.11067010.3139/146.110670Search in Google Scholar
[28] S.Chilingaryan, A.Mirone, A.Hammersley, C.Ferrero, L.Helfen, A.Kopmann, T.dos Santos Rolo, P.Vagovic. IEEE T. Nucl. Sci.58 (2011) 1447. 10.1109/TNS.2011.214168610.1109/TNS.2011.2141686Search in Google Scholar
[29] H.Mimura, S.Handa, T.Kimura, H.Yumoto, D.Yamakawa, H.Yokoyama, S.Matsuyama, K.Inagaki, K.Yamamura, Y.Sano: Nat. Phys.6 (2009) 122. 10.1038/nphys145710.1038/nphys1457Search in Google Scholar
[30] M.Feser, J.Gelb, H.Chang, H.Cui, F.Duewer, S.H.Lau, A.Tkachuk, W.Yun: Meas. Sci. Technol.19 (2008) 094001. 10.1088/0957-0233/19/9/09400110.1088/0957-0233/19/9/094001Search in Google Scholar
[31] S.Kneip, C.McGuffey, J.L.Martins, S.F.Martins, C.Bellei, V.Chvykov, F.Dollar, R.Fonseca, C.Huntington, G.Kalintchenko, A.Maksimchuk, S.P.D.Mangles, T.Matsuoka, S.R.Nagel, C.A.J.Palmer, J.Schreiber, K.Ta Phuoc, A.G.R.Thomas, V.Yanovsky, L.O.Silva, K.Krushelnick, Z.Najmudin: Nat. Phys.6 (2010) 980. 10.1038/nphys178910.1038/nphys1789Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Exploiting Contrast with Tomography
- Original Contributions
- 3D imaging of complex materials: the case of cement
- Neutron Bragg-edge mapping of weld seams
- 3D image analysis and stochastic modelling of open foams
- In-situ X-ray microtomography study of the movement of a granular material within a die
- Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens
- Numerical correction of X-ray detector backlighting
- X-ray phase contrast and fluorescence nanotomography for material studies
- Estimation of the probability of finite percolation in porous microstructures from tomographic images
- Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques
- Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping
- Fatigue induced deformation of taper connections in dental titanium implants
- Beyond imaging: on the quantitative analysis of tomographic volume data
- Damage fluctuations in creep deformed copper studied with synchrotron X-ray microtomography
- Neutron strain tomography using Bragg-edge transmission
- Three-dimensional registration of tomography data for quantification in biomaterials science
- Morpho-topological volume analysis of porous materials for nuclear applications
- People
- Professor Dr. rer. nat. Richard Wagner
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Exploiting Contrast with Tomography
- Original Contributions
- 3D imaging of complex materials: the case of cement
- Neutron Bragg-edge mapping of weld seams
- 3D image analysis and stochastic modelling of open foams
- In-situ X-ray microtomography study of the movement of a granular material within a die
- Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens
- Numerical correction of X-ray detector backlighting
- X-ray phase contrast and fluorescence nanotomography for material studies
- Estimation of the probability of finite percolation in porous microstructures from tomographic images
- Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques
- Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping
- Fatigue induced deformation of taper connections in dental titanium implants
- Beyond imaging: on the quantitative analysis of tomographic volume data
- Damage fluctuations in creep deformed copper studied with synchrotron X-ray microtomography
- Neutron strain tomography using Bragg-edge transmission
- Three-dimensional registration of tomography data for quantification in biomaterials science
- Morpho-topological volume analysis of porous materials for nuclear applications
- People
- Professor Dr. rer. nat. Richard Wagner
- DGM News
- DGM News