Neutron Bragg-edge mapping of weld seams
-
Nikolay Kardjilov
Abstract
Cold neutrons have a wavelength that is in the same range as the lattice spacings of most polycrystalline metallic materials. Imaging of such materials with monochromatic cold neutrons of different wavelengths provides a unique contrast due to coherent Bragg scattering. Additionally, the spectral positions of the Bragg edges can be mapped for each point of an image by using the transmission data of corresponding wavelength scans. We present investigations of welded components with such energy-selective neutron radiography around specific Bragg-edges in the transmission spectrum. Features in the local microstructure of the weld have been visualized.
References
[1] J.Chen, P.Shen: Scripta Mater.37 (1997) 1287. 10.1016/S1359-6462(97)00261-3Search in Google Scholar
[2] S.R.Wang, P.Shen: Mater. Sci. Eng. A251 (1998) 106. 10.1016/S0921-5093(98)00638-8Search in Google Scholar
[3] K.T.Lin, P.Shen: Mater. Sci. Eng. A270 (1999) 125. 10.1016/S0921-5093(99)00199-9Search in Google Scholar
[4] J.Rankin, B.W.Sheldon: Mater. Sci. Eng. A204 (1995) 48. 10.1016/0921-5093(95)09936-0Search in Google Scholar
[5] V.Y.Doo, R.W.Balluffi: Acta Metall.6 (1958) 428.10.1016/0001-6160(58)90021-XSearch in Google Scholar
[6] J.P.Poirier: Creep of Crystals, Cambridge University Press, Cambridge (1985).10.1017/CBO9780511564451Search in Google Scholar
[7] M.Y.Li, P.Shen, S.L.Hwang: Mater. Sci. Eng. A343 (2003) 227. 10.1016/S0921-5093(02)00328-3Search in Google Scholar
[8] K.C.Yang, P.Shen, D.Gan: J. Eur. Ceram. Soc.28 (2008) 1169. 10.1016/j.jeurceramsoc.2007.09.049Search in Google Scholar
[9] D.A.Porter, E.A.Easterling: Phase Transformations in Metals and Alloys, 2nd ed.Van Nostrand Reinhold, New York (1992).10.1007/978-1-4899-3051-4Search in Google Scholar
[10] M.L.Wu, D.Gan, P.Shen: Mater. Sci. Eng. A297 (2001) 119. 10.1016/S0921-5093(00)01268-5Search in Google Scholar
[11] K.C.Yang, P.Shen: J. Solid State Chem.178 (2005) 661. 10.1016/j.jssc.2004.12.019Search in Google Scholar
[12] K.C.Yang, P.Shen, D.Gan: J. Solid State Chem.179 (2006) 3478. 10.1016/j.jssc.2006.07.020Search in Google Scholar
[13] T.Eto, A.Sato, T.Mori: Acta Metall.26 (1978) 499.10.1016/0001-6160(78)90175-XSearch in Google Scholar
[14] H.C.Yu, P.Shen: J. Euro. Ceram. Soc., 28 (2008) 91. 10.1016/j.jeurceramsoc.2007.06.016Search in Google Scholar
[15] T.Chen and P.Shen: J. Phys. Chem. C, 113 (2009) 328. 10.1021/jp8084793Search in Google Scholar
[16] T.J.B.Holland, S.A.T.Redferen: Unitcell Refinement from Powder Diffraction Data: the Use of Regression Diagnostics (1997).10.1180/minmag.1997.061.404.07Search in Google Scholar
[17] H.Y.Lin: MS thesis, National Sun Yat-sen University, Taiwan 2009.Search in Google Scholar
[18] C.Y.Pan: MS thesis, National Sun Yat-sen University, Taiwan 2009.Search in Google Scholar
[19] A.Masson, J.J.Mtois, R.Kern: Surf. Sci.27 (1971) 463. 10.1016/0039-6028(71)90182-8Search in Google Scholar
[20] R.Kern, A.Masson, J.J.Mtois: Surf. Sci.27 (1971) 483. 10.1016/0039-6028(71)90183-XSearch in Google Scholar
[21] J.J.MtoisM.Gauch, A.Masson, R.Kern: Surf. Sci.30 (1972) 43. 10.1016/0039-6028(72)90022-2Search in Google Scholar
[22] J.J.MtoisM.Gauch, A.Masson, R.Kern: Thin Solid Films11 (1972) 205. 10.1016/0040-6090(72)90046-6Search in Google Scholar
[23] J.J.Mtois: Surf. Sci.36 (1973) 269. 10.1016/0039-6028(73)90261-6Search in Google Scholar
[24] L.Y.Kuo, P.Shen: Surf. Sci.373 (1997) L350. 10.1016/S0039-6028(96)01258-7Search in Google Scholar
[25] A.Einstein: Investigations on the Theory of the Brownian Movement, Methuen (1926).Search in Google Scholar
[26] S.Gladstone, K.Laidler, H.Eyring: The Theory of Rate Processes, McGraw-Hill, New York (1941).Search in Google Scholar
[27] R.D.Shannon: Acta Crystallogr. A32 (1976) 751. 10.1107/S0567739476001551Search in Google Scholar
[28] A.Putnis: Introduction to Mineral Sciences, Cambridge University Press, Cambridge (1992).10.1017/CBO9781139170383Search in Google Scholar
[29] F.A.KrögerH.J.Vink: Solid State Phys.3 (1956) 307.10.1016/S0081-1947(08)60135-6Search in Google Scholar
[30] M.Oku, Y.Sato: Appl. Surf. Sci.55 (1992) 37. 10.1016/0169-4332(92)90378-BSearch in Google Scholar
[31] S.H.Sun, G.W.Meng, G.X.Zhang, T.Gao, B.Y.Geng, L.D.Zhang, J.Zuo: Chem. Phys. Lett.376 (2003) 103. 10.1016/S0009-2614(03)00965-5Search in Google Scholar
[32] R.G.Burns: Mineralogical Applications of Crystal Field Theory, Cambridge University Press, Cambridge (1993).10.1017/CBO9780511524899Search in Google Scholar
[33] B.Soffa: Diffusional Pathways in the Decomposition of Alloys. In International Conference on Solid-Solid Phase Transformation in Inorganic Materials 2005, Phoenix (2005).Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Exploiting Contrast with Tomography
- Original Contributions
- 3D imaging of complex materials: the case of cement
- Neutron Bragg-edge mapping of weld seams
- 3D image analysis and stochastic modelling of open foams
- In-situ X-ray microtomography study of the movement of a granular material within a die
- Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens
- Numerical correction of X-ray detector backlighting
- X-ray phase contrast and fluorescence nanotomography for material studies
- Estimation of the probability of finite percolation in porous microstructures from tomographic images
- Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques
- Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping
- Fatigue induced deformation of taper connections in dental titanium implants
- Beyond imaging: on the quantitative analysis of tomographic volume data
- Damage fluctuations in creep deformed copper studied with synchrotron X-ray microtomography
- Neutron strain tomography using Bragg-edge transmission
- Three-dimensional registration of tomography data for quantification in biomaterials science
- Morpho-topological volume analysis of porous materials for nuclear applications
- People
- Professor Dr. rer. nat. Richard Wagner
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Exploiting Contrast with Tomography
- Original Contributions
- 3D imaging of complex materials: the case of cement
- Neutron Bragg-edge mapping of weld seams
- 3D image analysis and stochastic modelling of open foams
- In-situ X-ray microtomography study of the movement of a granular material within a die
- Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens
- Numerical correction of X-ray detector backlighting
- X-ray phase contrast and fluorescence nanotomography for material studies
- Estimation of the probability of finite percolation in porous microstructures from tomographic images
- Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques
- Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping
- Fatigue induced deformation of taper connections in dental titanium implants
- Beyond imaging: on the quantitative analysis of tomographic volume data
- Damage fluctuations in creep deformed copper studied with synchrotron X-ray microtomography
- Neutron strain tomography using Bragg-edge transmission
- Three-dimensional registration of tomography data for quantification in biomaterials science
- Morpho-topological volume analysis of porous materials for nuclear applications
- People
- Professor Dr. rer. nat. Richard Wagner
- DGM News
- DGM News