Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens
-
Lukas Helfen
, Thilo F. Morgeneyer , Feng Xu , Mark N. Mavrogordato , Ian Sinclair , Burkhard Schillinger and Tilo Baumbach
Abstract
Computed laminography has been introduced to synchrotron and neutron imaging set-ups to complement computed tomography for three-dimensional imaging of laterally extended (i. e. plate-like) specimens. The wide application field of computed laminography due to different contrast modes (X-ray or neutron absorption and X-ray phase contrast) and spatial resolutions ranging from some 100 down to approximately 0.5 μm is demonstrated. Selected examples from device inspection and from materials science are reported. They outline the interest of the method for non-destructive and in-situ measurements of regions of interest in large planar specimens where engineering-relevant boundary conditions have to be met. With a materials science background, the in-situ investigation of crack propagation in aluminium sheets and carbon-fibre composite panels under mechanical loading is reported.
References
[1] Advanced Tomographic Methods in Materials Research and Engineering, J.Banhart (Ed.), Oxford University Press, New York (2008).10.1093/acprof:oso/9780199213245.001.0001Search in Google Scholar
[2] L.HelfenT.Baumbach, P.Mikulík, D.Kiel, P.Pernot, P.Cloetens, J.Baruchel: Appl. Phys. Lett.86 (2005) 071915.10.1063/1.1854735Search in Google Scholar
[3] L.Helfen, A.Myagotin, P.Pernot, M.DiMichiel, P.Mikulík, A.Berthold, T.Baumbach: Nucl. Instrum. Meth. Phys. Res. A563 (2006) 163. 18097079; 10.1016/j.nima.2006.01.08510.1016/j.nima.2006.01.085Search in Google Scholar
[4] L.Helfen, A.Myagotin, A.Rack, P.Pernot, P.Mikulík, M.DiMichiel, T.Baumbach: Phys. Stat. Sol. A204 (2007) 2760.10.1002/pssa.200775676Search in Google Scholar
[5] K.Krug, L.Porra, P.Coan, G.Tauber, A.Wallert, J.Dik, A.Coerdt, A.Bravin, M.Elyyan, L.Helfen, T.Baumbach: J. Synchr. Rad.15 (2008) 55. 10.1107/S090904950704543810.1107/S0909049507045438Search in Google Scholar PubMed
[6] J.Dik, P.Reischig, K.Krug, A.Wallert, A.Coerdt, L.Helfen, T.Baumbach: J. Am. Inst. Conserv.48 (2009) 185.10.1179/019713612804514260Search in Google Scholar
[7] A.Houssaye, F.Xu, L.Helfen, V.de Buffrénil, T.Baumbach, P.Tafforeau: J. Vertebr. Paleontol.31 (2011) 2. 10.1080/02724634.2011.53965010.1080/02724634.2011.539650Search in Google Scholar
[8] L.Helfen, F.Xu, B.Schillinger, E.Calzada, I.Zanette, T.Weitkamp, T.Baumbach: Nucl. Instrum. Meth. Phys. Res. A651 (2011) 135–139. 10.1016/j.nima.2011.01.11410.1016/j.nima.2011.01.114Search in Google Scholar
[9] L.Helfen, T.Baumbach, P.Cloetens, J.Baruchel: Appl. Phys. Lett.94 (2009) 104103. 10.1063/1.308923710.1063/1.3089237Search in Google Scholar
[10] F.Xu, L.Helfen, A.J.Moffat, G.Johnson, I.Sinclair, T.Baumbach: J. Synchr. Radiat.17 (2010) 222. 10.1107/S090904951000151210.1107/S0909049510001512Search in Google Scholar PubMed PubMed Central
[11] M.-V.Uz, M.Koçak, F.Lemaitre, J.-C.Ehrstrom, S.Kemp, F.Bron: Int. J. Fatigue31 (2009) 916–926. 10.1016/j.ijfatigue.2008.10.00310.1016/j.ijfatigue.2008.10.003Search in Google Scholar
[12] L.Helfen, A.Myagotin, P.Mikulík, P.Pernot, A.Voropaev, M.Elyyan, M.DiMichiel, J.Baruchel, T.Baumbach: Rev. Sci. Instrum.82 (2011) 063702. 10.1063/1.359656610.1063/1.3596566Search in Google Scholar PubMed
[13] F.Xu, L.Helfen, T.Baumbach, H.Suhonen: “Comparison of image quality in computed laminography and tomography”, manuscript submitted.Search in Google Scholar
[14] L.Helfen, T.Baumbach, P.Pernot, P.Mikulík, M.DiMichiel, J.Baruchel: Proc. SPIE6318 (2006), 63180N. 10.1117/12.68079710.1117/12.680797Search in Google Scholar
[15] A.Myagotin, A.Voropaev, L.Helfen, D.Hänschke, T.Baumbach: Fast volume reconstruction for parallel-beam computed laminography by filtered backprojection, manuscript submitted.Search in Google Scholar
[16] L.Helfen, V.Altapova, D.Hänschke, A.Homs Puron, J.-P.Valade, M.Nicola, M.Schneider, J.Baruchel, T.Baumbach: “ANKA's absorption and phase-contrast laminography instrument at ESRF beamline ID19”, manuscript in preparation.Search in Google Scholar
[17] T.Weitkamp, P.Tafforeau, E.Boller, P.Cloetens, J.-P.Valade, P.Bernard, F.Peyrin, W.Ludwig, L.Helfen, J.Baruchel: AIP Conference Proceedings 1221 (2010) 33. 10.1063/1.339925310.1063/1.3399253Search in Google Scholar
[18] B.Schillinger, E.Calzada, K.Lorenz: Solid State Phenomena112 (2006) 61. 10.4028/www.scientific.net/SSP.112.61Search in Google Scholar
[19] A.J.Moffat, P.Wright, L.Helfen, T.Baumbach, G.Johnson, S.M.Spearing, I.Sinclair: Scripta Mater.62 (2010) 97. 10.1016/j.scriptamat.2009.09.02710.1016/j.scriptamat.2009.09.027Search in Google Scholar
[20] T.F.Morgeneyer, L.Helfen, I.Sinclair, H.Proudhon, F.Xu, T.Baumbach: Scripta Mater.65 (2011) 1010–1013. 10.1016/j.scriptamat.2011.09.00510.1016/j.scriptamat.2011.09.005Search in Google Scholar
[21] T.Tian, F.Xu, J.K.Han, D.Choi, Y.Cheng, L.Helfen, M.DiMichiel, T.Baumbach, K.N.Tu: Appl. Phys. Lett.99 (2011) 082114. 10.1063/1.362834210.1063/1.3628342Search in Google Scholar
[22] C.Q.Chen, J.F.Knott: Met. Sci.15 (1981) 357.Search in Google Scholar
[23] D.Dumont, A.Deschamps, Y.Bréchet, C.Sigli, J.C.Ehrström: Mater. Sci. Techn.20 (2004) 1. 10.1179/02670830422501666210.1179/026708304225016662Search in Google Scholar
[24] U.Zerbst, M.Heinimann, C.Dalle Donne, D.Steglich: Eng. Frac. Mech.76 (2009) 5. 10.1016/j.engfracmech.2007.10.00510.1016/j.engfracmech.2007.10.005Search in Google Scholar
[25] T.F.Morgeneyer, M.J.Starink, I.Sinclair: Acta Mater.56 (2008) 1671. 10.1016/j.actamat.2007.12.01910.1016/j.actamat.2007.12.019Search in Google Scholar
[26] T.F.Morgeneyer, M.J.Starink, S.C.Wang, I.Sinclair: Acta Mater.56 (2008) 2872. 10.1016/j.actamat.2008.02.02110.1016/j.actamat.2008.02.021Search in Google Scholar
[27] T.F.Morgeneyer, J.Besson, H.Proudhon, M.J.Starink, I.Sinclair: Acta Mater.57 (2009) 3902. 10.1016/j.actamat.2009.04.04610.1016/j.actamat.2009.04.046Search in Google Scholar
[28] H.Toda, E.Maire, S.Yamauchi, H.Tsuruta, T.Hiramatsu, M.Kobayashi: Acta Mater.59 (2011) 1995. 10.1016/j.actamat.2010.11.06510.1016/j.actamat.2010.11.065Search in Google Scholar
[29] H.Suhonen, F.Xu, L.Helfen, C.Ferrero, P.Vladimirov, P.Cloetens: “X-ray phase contrast and fluorescence nanotomography for material studies”, Int. J. Mater. Res., 103 (2012) 179. 10.3139/146.110664Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Exploiting Contrast with Tomography
- Original Contributions
- 3D imaging of complex materials: the case of cement
- Neutron Bragg-edge mapping of weld seams
- 3D image analysis and stochastic modelling of open foams
- In-situ X-ray microtomography study of the movement of a granular material within a die
- Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens
- Numerical correction of X-ray detector backlighting
- X-ray phase contrast and fluorescence nanotomography for material studies
- Estimation of the probability of finite percolation in porous microstructures from tomographic images
- Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques
- Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping
- Fatigue induced deformation of taper connections in dental titanium implants
- Beyond imaging: on the quantitative analysis of tomographic volume data
- Damage fluctuations in creep deformed copper studied with synchrotron X-ray microtomography
- Neutron strain tomography using Bragg-edge transmission
- Three-dimensional registration of tomography data for quantification in biomaterials science
- Morpho-topological volume analysis of porous materials for nuclear applications
- People
- Professor Dr. rer. nat. Richard Wagner
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Exploiting Contrast with Tomography
- Original Contributions
- 3D imaging of complex materials: the case of cement
- Neutron Bragg-edge mapping of weld seams
- 3D image analysis and stochastic modelling of open foams
- In-situ X-ray microtomography study of the movement of a granular material within a die
- Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens
- Numerical correction of X-ray detector backlighting
- X-ray phase contrast and fluorescence nanotomography for material studies
- Estimation of the probability of finite percolation in porous microstructures from tomographic images
- Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques
- Three-dimensional morphology and mechanics of bone scaffolds fabricated by rapid prototyping
- Fatigue induced deformation of taper connections in dental titanium implants
- Beyond imaging: on the quantitative analysis of tomographic volume data
- Damage fluctuations in creep deformed copper studied with synchrotron X-ray microtomography
- Neutron strain tomography using Bragg-edge transmission
- Three-dimensional registration of tomography data for quantification in biomaterials science
- Morpho-topological volume analysis of porous materials for nuclear applications
- People
- Professor Dr. rer. nat. Richard Wagner
- DGM News
- DGM News