Home Growth of rare-earth zirconates-based pyrochlore buffer layers on YSZ for YBCO-coated conductors via chemical solution deposition
Article
Licensed
Unlicensed Requires Authentication

Growth of rare-earth zirconates-based pyrochlore buffer layers on YSZ for YBCO-coated conductors via chemical solution deposition

  • Ya Shen , Guofang Zhang , Chengshan Li , Zeming Yu , Lihua Jin , Yao Wang and Yafeng Lu
Published/Copyright: May 18, 2013
Become an author with De Gruyter Brill

Abstract

Epitaxial films of rare-earth zirconates, RE2Zr2O7 (RE = La, Nd, Sm and Gd) were grown on yttrium stabilized zirconia (100) single crystal substrates using metal-organic deposition. A precursor solution of 0.25 '0.40 M concentration of total cations was spin-coated on yttrium stabilized zirconia substrates and crystallized at 1 000 8C for 3 h in Ar-4%H2 after calcination at 500 8C for 1 h. X-ray diffraction studies showed that the resulting pyrochlore RE2Zr2O7 films were highly textured with cube-on-cube epitaxy. Atomic force microscopy investigations revealed that the surfaces of La2Zr2O7, Nd2Zr2O7 and Sm2Zr2O7 films had a fairly dense and smooth microstructure without cracks and porosity, but that voids could be seen on the surface of the Gd2Zr2O7 film. Optical microscopy measurements confirmed that the Gd2Zr2O7 precursor solution showed poor wetting behavior on the substrate. It was concluded that the Nd2Zr2O7 and Sm2Zr2O7 films could be potentially used as buffer layers for YBa2Cu3O7-d coated conductors.


Correspondence address, Prof. Dr. Guofang Zhang, Key Laboratory of Applied Surface and Colloid Chemistry, (Shaanxi Normal University) Ministry of Education, School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, P. R. China, Tel.: +862985307 647, Fax: +862985307 774, E-mail:

Refrences

[1] T.Aytug: J. Mater. Res.20 (2005) 29882996. DOI:10.1557/JMR.2005.036510.1557/JMR.2005.0365Search in Google Scholar

[2] R.L.Sheffield: in 10th Workshop RF Superconductivity, Tsukuba, Japan, Sep. (2001) 611.Search in Google Scholar

[3] A.Ichinose, C.Y.Yang, D.C.Larbalestier, S.E.Babcock, A.Kikuchi, K.Tachikawa, S.Akita: Physica C324 (1999) 113. DOI:10.1016/S0921-4534(99)00478-510.1016/S0921-4534(99)00478-5Search in Google Scholar

[4] K.Knoth, R.Hühne, S.Oswald, L.Schultz, B.Holzapfel: Acta Materialia55 (2007) 517529. DOI:10.1016/j.actamat.2006.08.04010.1016/j.actamat.2006.08.040Search in Google Scholar

[5] Y.X.Zhou, S.Bhuiyan, S.Scruggs, H.Fang, M.Mironova, K.Salama: Supercond. Sci. Technol.16 (2003) 901. DOI:10.1088/0953-2048/16/8/31210.1088/0953-2048/16/8/312Search in Google Scholar

[6] S.Sathyamurthy, K.Salama: Supercond. Sci. Technol.13 (2000) L1L3. DOI:10.1088/0953-2048/13/7/10110.1088/0953-2048/13/7/101Search in Google Scholar

[7] J.T.Dawley, R.J.Ong, P.G.Clem: J. Mater. Res.17 (2002) 16781685. DOI:10.1557/JMR.2002.024710.1557/JMR.2002.0247Search in Google Scholar

[8] M.S.Bhuiyan, M.Paranthaman, S.Sathyamurthy, T.Aytug, S.Kang, D.E.Lee, A.Goyal, E.A.Payzant, K.Salama: Supercond. Sci. Technol.16 (2003) 13051309. DOI:10.1088/0953-2048/16/11/00910.1088/0953-2048/16/11/009Search in Google Scholar

[9] Y.X.Zhou, S.Bhuiyan, H.Fang, K.Salama: Ceram. Trans.149 (2003) 51.Search in Google Scholar

[10] M.W.Rupich, Q.Li, S.Annavarapu, C.Thieme, W.Zhang, V.Prunier, M.Paranthaman, A.Goyal, D.F.Lee, E.D.Specht, F.A.List: IEEE Trans. Appl. Supercond.11 (2001) 2927. DOI:10.1109/77.91967510.1109/77.919675Search in Google Scholar

[11] M.T.Escote, F.M.Pontes, E.R.Leite, J.A.Varela, R.F.Jardim, E.Longo: Thin Solid Films445 (2003) 54. DOI:10.1016/j.tsf.2003.08.05010.1016/j.tsf.2003.08.050Search in Google Scholar

[12] K.Ueno, T.Yamaguchi, W.Sakamoto, T.Yogo, K.Kikuta, S.Hirano: Thin Solid Films491 (2007) 78. DOI:10.1016/j.tsf.2005.05.03210.1016/j.tsf.2005.05.032Search in Google Scholar

[13] X.J.Meng, J.G.Cheng, J.L.Sun, H.J.Ye, S.L.Guo, J.H.Chu: J. Crystal. Growth220 (2000) 100. DOI:10.1016/S0022-0248(00)00742-910.1016/S0022-0248(00)00742-9Search in Google Scholar

[14] G.H.Kim, D.P.Kim, K.T.Kim, C.I.Kim, C.I.Lee, T.H.Kim: Thin Solid Films506/507 (2006) 217. DOI:10.1016/j.tsf.2005.08.23210.1016/j.tsf.2005.08.232Search in Google Scholar

[15] G.N.Glavee, R.D.Hunt, M.Paranthaman: Mater. Res. Bull.5 (1999) 817. DOI:10.1016/S0025-5408(99)00061-610.1016/S0025-5408(99)00061-6Search in Google Scholar

[16] S.S.Shoup, M.Paranthaman, D.B.Beach, E.D.Specht, P.K.Williams: J. Mater. Res.12 (1997) 1694. DOI:10.1557/JMR.1997.014210.1557/JMR.1997.0142Search in Google Scholar

[17] C.Pollak, K.Reichmann, H.Hutter: App. Sur. Sci.179 (2001) 133. DOI:10.1016/S0169-4332(01)00289-610.1016/S0169-4332(01)00289-6Search in Google Scholar

[18] Y.Wang, G.F.Zhang, C.S.Li, G.Yan, Y.F.Lu: Int. J. Mat. Res.101 (2010) 3.Search in Google Scholar

[19] W.B.Yang, G.F.Zhang, L.H.Jin, C.S.Li, G.Yan, Y.F.Lu: Physica C469 (2009) 70. DOI:10.1016/j.physc.2008.12.00110.1016/j.physc.2008.12.001Search in Google Scholar

[20] F.Gu, S.F.Wang, M.K.Lu, X.F.Cheng, S.W.Liu, G.J.Zhou, D.Xu, D.R.Yuan: J. Cryst. Growth262 (2004) 182. DOI:10.1016/j.jcrysgro.2003.10.02810.1016/j.jcrysgro.2003.10.028Search in Google Scholar

[21] E.Celik, Y.Akin, W.Sigmund, Y.S.Hascicek: IEEE Trans. Appl. Supercond.13 (2003) 2669. DOI:10.1109/TASC.2003.81194610.1109/TASC.2003.811946Search in Google Scholar

[22] Y.X.Zhou, X.Zhang, H.Fang, P.T.Putman, K.Salama: IEEE Trans. Appl. Supercond.15 (2005) 27112714. DOI:10.1109/TASC.2005.84779210.1109/TASC.2005.847792Search in Google Scholar

[23] M.S.Bhuiyan, M.Paranthaman, S.Sathyamurthy, A.Goyal, K.Salama: J. Mater. Res.20 (2005) 904909. DOI:10.1557/JMR.2005.011010.1557/JMR.2005.0110Search in Google Scholar

[24] G.Li, M.H.Pu, R.P.Sun, W.T.Wang, X.Zhang, H.Zhang, Y.Yang, Y.Zhang, H.Zhang, C.H.Cheng, Y.Zhao: Physica C468 (2008) 16011605. DOI:10.1016/j.physc.2008.05.27110.1016/j.physc.2008.05.271Search in Google Scholar

[25] H.B.Zhao, C.G.Levi, H.N.G.Wadley: Surf. Coat. Technol.203 (2009) 31573167. DOI:10.1016/j.surfcoat.2009.03.04810.1016/j.surfcoat.2009.03.048Search in Google Scholar

[26] R.M.Leckie, S.Krämer, M.Rühle, C.G.Levi: Acta Mater.53 (2005) 32813292. DOI:10.1016/j.actamat.2005.03.03510.1016/j.actamat.2005.03.035Search in Google Scholar

[27] B.Liu, J.Y.Wang, F.Z.Li, Y.C.Zhou: Acta Mater.58 (2010) 43694377. DOI:10.1016/j.actamat.2010.04.03110.1016/j.actamat.2010.04.031Search in Google Scholar

[28] J.Y.Wang, Y.C.Zhou, Z.J.Lin: Acta Mater.55 (2007) 60196026. DOI:10.1016/j.actamat.2007.07.01010.1016/j.actamat.2007.07.010Search in Google Scholar

[29] Z.J.Lin, M.J.Zhou, Z.Q.Sun, P.Veyssière, Y.C.Zhou: Acta Mater.57 (2009) 28512857. DOI:10.1016/j.actamat.2009.02.04010.1016/j.actamat.2009.02.040Search in Google Scholar

[30] Nakasaki, Ryusuke: Jpn. Kokai Tokkyo koho (2001) JP2010007164.Search in Google Scholar

[31] Y.Wang, L.Zhou, Y.F.Lu, C.S.Li, Z.M.Yu, J.S.Li, L.H.Jin, Y.Zhang, Y.Shen: J. Mater. Sci.: Mater Electron, in press.Search in Google Scholar

[32] F.Sandiumenge, A.Cavallaro, J.Gazquez, T.Puig, X.Obradors, J.Arbiol, H.C.Freyhardt: Nanotechnology16 (2005) 18091813. DOI:10.1088/0957-4484/16/9/06610.1088/0957-4484/16/9/066Search in Google Scholar

[33] Z.M.Yu, P.Odier, L.Ortega, L.Zhou, P.X.Zhang, A.Girard: Mater. Sci. Eng. B130 (2006) 126131. DOI:10.1016/j.mseb.2006.02.06410.1016/j.mseb.2006.02.064Search in Google Scholar

[34] Z.M.Yu, L.Zhou, P.X.Zhang: Ph. D. Thesis, Northeastern University, China, 2008.Search in Google Scholar

[35] M.S.Bhuiyan, M.Paranthaman, K.Salama: Supercond. Sci. Technol.19 (2006) R1R21. DOI:10.1088/0953-2048/19/2/R0110.1088/0953-2048/19/2/R01Search in Google Scholar

[36] K.Knoth, R.Hühne, S.Oswald, L.Molina, O.Eibl, L.Schultz, B.Holzapfel: Thin Solid Films516 (2008) 20992108. DOI:10.1016/j.tsf.2007.08.13010.1016/j.tsf.2007.08.130Search in Google Scholar

Received: 2010-12-3
Accepted: 2011-10-23
Published Online: 2013-05-18
Published in Print: 2012-03-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Free-surface enhanced continuum model predicts size-effect for pillar compression at micro- and nano-scale
  5. Modelling of microstructural evolution on complex paths of large plastic deformation
  6. Melting temperature of metallic nanoparticles embedded in a rigid matrix
  7. On the coupled growth of oxide phases during internal oxidation of Ag–Sn–Bi alloys
  8. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI
  9. Pressureless co-sintering behaviour of a steel/cemented carbide component: model bimaterial
  10. Rafting structure formation during solution treatment in a nickel-based superalloy
  11. A model to calculate the viscosity of silicate melts
  12. Prediction of glass transition temperatures of aromatic heterocyclic polymers
  13. Relationship between the γ and some parameters of Fe-based bulk metallic glasses
  14. Growth of rare-earth zirconates-based pyrochlore buffer layers on YSZ for YBCO-coated conductors via chemical solution deposition
  15. Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells
  16. Effects of preparation methods on color properties of ZnO-based nano-crystalline green pigments
  17. Effect of reaction media on the formation of CdS nanorods
  18. Effect of titanium addition on structure and properties of the as-cast high Cr–Mo white iron
  19. Effect of welding sequence on residual stress distributions in GTA welding of AA5251 plate
  20. Electrochemical machining of Al/15% SiCP composites through a response surface methodology-based approach
  21. Effects of nanoclay on rutting and fatigue resistance of bitumen binder
  22. DGM News
  23. DGM News
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110648/html?srsltid=AfmBOorGtGjyrjNqAG2taQIL740yR7DfKhddTn0j7Qc3PB3MJ951ECBP
Scroll to top button