Home Technology Creep properties from indentation tests by analytical and numerical techniques
Article
Licensed
Unlicensed Requires Authentication

Creep properties from indentation tests by analytical and numerical techniques

  • Matteo Galli and Michelle L. Oyen
Published/Copyright: June 11, 2013

Abstract

Analytical and numerical methods for the identification of creep properties of two polymers and indium from indentation tests are compared. Creep indentation experiments are performed at fixed peak force following ramp loading. The experiments are modeled both by analytical techniques and by finite elements and the models are integrated in an identification routine. The assumed mechanical behavior allows for a satisfactory fit of the experimental data. For the considered viscoelastic materials analytical and numerical modeling are equivalent whereas for indium finite element modeling is to be preferred since the analytical model is not representative at the large levels of plastic strain experimentally obtained.


* Correspondence address, Dr. Michelle Oyen, Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ, UK, Tel.: +44 1223 332 680, Fax: +44 1223 339 263, E-mail:

References

[1] J.Jachowicz, R.McMullen, D.Prettypaul: Skin Res. Technol.13 (2000) 299.Search in Google Scholar

[2] G.Cseh, J.Bar, H.J.Gudladt, J.Lendvai, A.Juhasz: Mater. Sci. Eng. A-Struct.272 (1999) 145.Search in Google Scholar

[3] M.L.Oyen: J. Mater. Res.23 (2008) 130710.1557/JMR.2008.0156Search in Google Scholar

[4] M.Galli, K.S.C.Comley, T.A.V.Shean, M.L.Oyen: J. Mater. Res.24 (2009), to appear, March 2009.Search in Google Scholar

[5] N.Huber, C.Tsakamakis: J. Mech. Phys. Solids47 (1999) 1569.Search in Google Scholar

[6] N.Huber, C.Tsakamakis: J. Mech. Phys. Solids47 (1999) 1589.Search in Google Scholar

[7] M.L.Oyen: Acta Mater.55 (2007) 3633.10.1016/j.actamat.2006.12.031Search in Google Scholar

[8] J.Cugnoni, J.Botsis, J.Sivasubramanian, J.Janczak-Rusch: Fatigue Fract. Eng. M.30 (2007) 387.Search in Google Scholar

[9] F.Lei, J.A.Z.Szeri: J. Biomech.40 (2007) 936.10.1115/1.2796056Search in Google Scholar PubMed

[10] M.Galli, J.Cugnoni, J.Botsis, J.Janczak-Rusch: Compos. Part A-Appl. S.39 (2008) 972.Search in Google Scholar

[11] R.S.Lakes: Viscoelastic Solids CRC Press, Boca Raton, FL (1998).Search in Google Scholar

[12] M.L.Oyen: Philos. Mag.86 (2006) 5625.10.1080/14786430600740666Search in Google Scholar

[13] E.H.Lee, J.R.M.Radok: J. Appl. Mech.27 (1960) 438.10.1115/1.3408473Search in Google Scholar

[14] A.F.Bower, N.A.Fleck, A.Needleman, N.Ogbonna: Proc. R. Soc. London A441 (1993) 97.Search in Google Scholar

[15] A.C.Moore, D.Tabor: Br. J. Appl. Phys.3 (1952) 299.Search in Google Scholar

[16] B.N.Lucas, W.C.Oliver: Metall. Mater. Trans. A30 (1999) 601.Search in Google Scholar

Received: 2008-9-24
Accepted: 2009-2-2
Published Online: 2013-06-11
Published in Print: 2009-07-01

© 2009, Carl Hanser Verlag, München

Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110131/html
Scroll to top button