Startseite Microstructures at high temperature of Fe-30 wt.% Cr-xC Alloys with x varying from 0 to 2 wt.%
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructures at high temperature of Fe-30 wt.% Cr-xC Alloys with x varying from 0 to 2 wt.%

  • Patrice Berthod , Pierric Lemoine und Johann Ravaux
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Differential thermal analysis experiments and treatments for 50 h at 1000, 1100 and 1200 °C were performed for a binary Fe30Cr alloy and for six Fe30Cr (0.2 to 2 wt.%) C alloys. A complete metallographic characterization was done for all samples. The solidus and liquidus temperatures, the natures and the surface fractions of the carbide and matrix phases were determined for the three temperatures. They were compared to thermodynamic calculation results. The values and the evolutions of the solidus temperature versus the carbon content are in good agreement between experiment and calculations. It is less true for the carbide volume fractions which were obtained either by image analysis, or from the matrix Cr content. Mismatches were also observed for the liquidus temperature. Comparisons were done with the Co30CrxC and Ni30CrxC systems and with Ta-containing Fe30CrxC alloys.


* Correspondence address, Dr. Patrice Berthod, Laboratoire de Chimie du Solide Minéral, Faculté des Sciences et Techniques, Nancy-Université, Université Henri Poincaré Nancy 1, Boulevard des Aiguillettes, BP239, F-54506 Vandoeuvre lès Nancy, France, Tel.: +33 3 83 68 46 66, Fax: +33 3 83 68 46 11, E-mail:

References

[1] S.Buytoz: Mater. Lett.60(2006)605.10.2524/jtappij.60.605Suche in Google Scholar

[2] R.Colaco, R.Vilar, J.Correia, in: Proc. of the Int. Conf. on Surface Modification Technologies, Paris (ASM International, Materials Park) (2001)257.Suche in Google Scholar

[3] M.Mita, N.Hirao: Nippon Oyo Jiki Gakkaishi28(2004)585.10.3379/jmsjmag.28.585Suche in Google Scholar

[4] Y.L.Alshevskii, O.N.Baklanova, A.I.Zaitsev, V.V.Maltsev, I.G.Rodionova, A.N.Rybkin, A.N.Shaposhnikov: Inorg. Mater.41(2005)133.10.1007/s10789-005-0032-1Suche in Google Scholar

[5] J.Sopousek, J.Vrestal: Met. Mat. Trans. B27(1996)701.Suche in Google Scholar

[6] A.Drolew, P.Christodoulou: V. Gutowski: Pol. Wear211(1997)120.10.1016/S0043-1648(97)00132-4Suche in Google Scholar

[7] M.Hajduga, J.Kucera: Oxid. Met.29(1988)121.10.1007/BF00656352Suche in Google Scholar

[8] T.Nishizawa, B.Uhrenius: Scand. J. Met.6(1977)67.Suche in Google Scholar

[9] M.Waldenström, B.Uhrenius: Scand. J. Met.6(1977)202.Suche in Google Scholar

[10] J.O.Andersson: Met. Trans. A19(1988)627.10.1007/BF02649276Suche in Google Scholar

[11] R.Benz, J.F.Elliott, J.Chipman: Met. Trans.5(1974)2235.10.1007/BF02643938Suche in Google Scholar

[12] M.Small, E.Ryba: Met. Trans. A12(1981)1389.10.1007/BF02643683Suche in Google Scholar

[13] P.Berthod, Y.Hamini, L.Aranda, L.Héricher: Calphad31(2007)351.10.1016/j.calphad.2007.01.007Suche in Google Scholar

[14] P.Berthod: Ann. Chim. Sci. Mater.33(2008)247.10.3166/acsm.33.247-265Suche in Google Scholar

[15] P.Berthod, P.Lemoine, L.Aranda: Mater. Sci. Forum Vol. 595-598(2008)871.10.4028/www.scientific.net/MSF.595-598.871Suche in Google Scholar

[16] CRC Handbook of Chemistry and Physics, 57th edition(1976).Suche in Google Scholar

[17] Thermo-Calc version N: “Foundation for Computational Thermodynamics” Stockholm, Sweden, Copyright (1993, 2000).www.thermocalc.comSuche in Google Scholar

[18] SGTE: Sientific Group Thermodata Europe database, update 1992.Suche in Google Scholar

[19] M.Kowalski, P.J.Spencer, K.Granat, H.Drzeniek, E.Lugscheider: Z. Metallkd.85(1994)359.10.1515/ijmr-1994-850514Suche in Google Scholar

[20] R.Lundberg, M.Waldenström, B.Uhrenius: Calphad1(1977)159.10.1016/0364-5916(77)90015-3Suche in Google Scholar

[21] P.Berthod, P.Lemoine, J.Ravaux: J. Alloys Compd.(2008), in press (10.1016/j.jallcom.2007.12.023).Suche in Google Scholar

[22] P.Berthod, P.Lemoine, L.Aranda: Calphad(2008), in press (10.10161j.calphad.2008.06.006).Suche in Google Scholar

Received: 2007-7-31
Accepted: 2008-5-14
Published Online: 2013-06-11
Published in Print: 2008-09-01

© 2008, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. Critical temperature for massive transformation in ultra-low-carbon Fe–C alloys
  5. Are data correctly fitted by the sin2 ψ and similar methods?
  6. Liquidus surface projection of the Fe–Co–C ternary system in the iron-rich corner
  7. Prediction of thermodynamic activities in binary iron-based alloys using two-point Padé approximants
  8. Study of fatigue dislocation structures in [233] coplanar double-slip-oriented copper single crystals using SEM electronic channelling contrast
  9. Microstructures at high temperature of Fe-30 wt.% Cr-xC Alloys with x varying from 0 to 2 wt.%
  10. The effect of cooling rate on the microstructure and mechanical properties of Mg–Zn–Gd-based alloys
  11. The effect of thermal exposure on the microstructure and hardness of as-cast Mg–Zn–Al alloys with Sn addition
  12. Applied
  13. Deformation and fracture of Ti-base nanostructured composite
  14. Microstructure and some properties of FeCr25Co15 alloy subjected to plastic deformation by complex load
  15. Determination of the concentration dependent diffusion coefficient of nitrogen in expanded austenite
  16. Suitability of maraging steel weld cladding for repair of die casting tooling
  17. Catalytic performance of Fe-, Pd-, and Pd–Fe- mordenites in simulated hydrocarbon-selective catalytic reduction of N2O by methane in a model flue-gas from nitric acid plants
  18. Thermodynamic consideration and experimental study on the preparation of heat-treated hollow nickel fibres
  19. A model for the intrinsic kinetic parameters of the direct reduction of MoS2 with hydrogen
  20. Notification
  21. DGM News
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101725/html
Button zum nach oben scrollen