Home Prediction of thermodynamic activities in binary iron-based alloys using two-point Padé approximants
Article
Licensed
Unlicensed Requires Authentication

Prediction of thermodynamic activities in binary iron-based alloys using two-point Padé approximants

  • Eduardo Stella and Jorge Stella
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

A method for predicting activities as a function of the concentration in liquid solutions for binary FeCo, FeCu, FeNi, FeMn and FePd systems using Padé approximants is presented. Padé approximants of orders 4/0 and 1/3 are proposed for the model using as input variables only the conditions from Henry's law at a given temperature. Results derived from the approximant 4/0 show good agreement with the experimental data in systems with moderate positive and negative deviations from the Raoultian behaviour. On the other hand, the approximant 1/3 shows a satisfactory agreement in the FeCu system which exhibits a high positive deviation from the Raoultian behaviour. A comparison with the results from a Redlich – Kister expansion using the same input conditions is discussed.


* Correspondence address, Dr. Jorge Stella, Materials Science Department, Universidad Simón Bolívar, Valle de Sartenejas, Caracas 1080, Venezuela, Tel.: +58 212 9063940, Fax: +58 212 9063932, E-mail:

References

[1] M.Margules: “Über die Zusammensetzung der gesaettigten Daempfe von Mischungen”, Sitzungsberichte, Akad. Wissenschaft, Vienna, 104(1895)12431278.Search in Google Scholar

[2] J.H.Hildebrand: J. Am. Chem. Soc.51(1929)6680.10.1021/ja01376a009Search in Google Scholar

[3] O.Redlich, A.T.Kister: Ind. Eng. Chem.40(1948)345348.10.1021/ie50458a036Search in Google Scholar

[4] L.S.Darken: Met. Soc. AIME Trans.239(1967)8089.Search in Google Scholar

[5] C.W.Bale, A.D.Pelton: Metall. Trans.5(1974)23232337.10.1007/BF02644013Search in Google Scholar

[6] D.S.Abrams, J.M.Prausnitz: J.M. Am. Inst. Chem. Eng. J.21(1975)116128.10.1002/aic.690210115Search in Google Scholar

[7] A.D.Pelton, S.A.Degterov, G.Eriksson, C.Robelin, Y.Dessureault: Metall. Mat. Trans. B31(2000)651659.10.1007/s11663-000-0103-2Search in Google Scholar

[8] X.Chen, H.Li: JMST18–3(2002)237241.Search in Google Scholar

[9] J.Tomiska: Thermochim. Acta314(1998)145153.10.1016/S0040-6031(97)00470-XSearch in Google Scholar

[10] Y.A.Chang, S.Chen, F.Zhang, X.Yan, F.Xie, R.Schmid-Fetzer, W.A.Oates: Prog. Mater. Sci.49(2004)313345.10.1016/S0079-6425(03)00025-2Search in Google Scholar

[11] P.Fredikson, B.Sundman: Calphad25–4(2002)535548.Search in Google Scholar

[12] A.Kostov, D.Živkovic: J. Alloys Compd.460(2008)164171.10.1016/j.jallcom.2007.05.059Search in Google Scholar

[13] F.H.Ree, W.G.Hoover: J. Chem. Phys.40(1964)939950.10.1063/1.1725286Search in Google Scholar

[14] G.A.Baker, J.L.Gammel, J.Wills: J Math. Anal. Appl.2(1961)405418.10.1016/0022-247X(61)90019-1Search in Google Scholar

[15] M.A.Solis, M.de Llano, J.W.Clark, G.A.Baker: Phys. Rev. E76–3(2007) Art. No. 031125.Search in Google Scholar

[16] A.Ziabicki, L.Jarecki, A.Schoene: Polymer45(2004)57355742.10.1016/j.polymer.2004.05.070Search in Google Scholar

[17] A.Schoene, A.Ziabicki, L.Jarecki: Polymer46(2005)39273935.10.1016/j.polymer.2005.02.109Search in Google Scholar

[18] I.Andrianov, V.Danishevsky, S.Tokarzewski: Acta Appl. Math.61(2000)2935.10.1023/A:1006455311626Search in Google Scholar

[19] S.Tokarzewski, J.J.Telega: Z. Angew. Math. Phys. 49-1(1998)137155.10.1007/s000330050085Search in Google Scholar

[20] V.E.Ostashev, S.L.Collier, D.K.Wilson, D.F.Aldridge, N.P.Symons, D.Marlin: J. Acoust. Soc. Am.122(2007)107112.10.1121/1.2743153Search in Google Scholar PubMed

[21] K.K.Pan: Phys. Lett. A244(1998)168173.Search in Google Scholar

[22] G.R.Belton, R.J.Fruehan: J. Phys. Chem.71(1967)14031409.10.1021/j100864a034Search in Google Scholar

[23] J.P.Morris, G.R.Zellars: J. Metals8(1956)10861090.Search in Google Scholar

[24] O.Kubaschewski, E.Evans, C.V.Alcock, in: G.V.Raynor (Ed.), International Series of Monographs in Metal Physics and Physical Metallurgy, Vol. 1, Metallurgical Thermochemistry, fourth ed.Pergamon Press, Oxford, 1967.Search in Google Scholar

[25] A.I.Timofeev, N.A.Vatolin, O.A.Esin, E.L.Dubinin: Tr. Sverdlovsk Met. Inst.20(1969)120125.Search in Google Scholar

[26] R.Hultgren, P.D.Desai, D.T.Hawkins, M.Geiser, K.K.Kelley, Selected values of the thermodynamics properties of binary alloys, ASM, Metals Park, OH, 1973.Search in Google Scholar

Received: 2007-9-4
Accepted: 2008-6-13
Published Online: 2013-06-11
Published in Print: 2008-09-01

© 2008, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Basic
  4. Critical temperature for massive transformation in ultra-low-carbon Fe–C alloys
  5. Are data correctly fitted by the sin2 ψ and similar methods?
  6. Liquidus surface projection of the Fe–Co–C ternary system in the iron-rich corner
  7. Prediction of thermodynamic activities in binary iron-based alloys using two-point Padé approximants
  8. Study of fatigue dislocation structures in [233] coplanar double-slip-oriented copper single crystals using SEM electronic channelling contrast
  9. Microstructures at high temperature of Fe-30 wt.% Cr-xC Alloys with x varying from 0 to 2 wt.%
  10. The effect of cooling rate on the microstructure and mechanical properties of Mg–Zn–Gd-based alloys
  11. The effect of thermal exposure on the microstructure and hardness of as-cast Mg–Zn–Al alloys with Sn addition
  12. Applied
  13. Deformation and fracture of Ti-base nanostructured composite
  14. Microstructure and some properties of FeCr25Co15 alloy subjected to plastic deformation by complex load
  15. Determination of the concentration dependent diffusion coefficient of nitrogen in expanded austenite
  16. Suitability of maraging steel weld cladding for repair of die casting tooling
  17. Catalytic performance of Fe-, Pd-, and Pd–Fe- mordenites in simulated hydrocarbon-selective catalytic reduction of N2O by methane in a model flue-gas from nitric acid plants
  18. Thermodynamic consideration and experimental study on the preparation of heat-treated hollow nickel fibres
  19. A model for the intrinsic kinetic parameters of the direct reduction of MoS2 with hydrogen
  20. Notification
  21. DGM News
Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101724/html
Scroll to top button