Startseite Bio-inspired syntheses of ZnO-protein composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bio-inspired syntheses of ZnO-protein composites

  • Luciana Pitta Bauermann , Joachim Bill und Fritz Aldinger
Veröffentlicht/Copyright: 23. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The influence of five different proteins on the crystallization of ZnO was investigated. The aim was to create bio-inspired artificially-synthesized materials by applying the knowledge acquired about naturally occurring inorganic/bio-organic composites. We found that the lower the isoelectric point of a protein, the more efficient is the adsorption of this protein at ZnO. Thus, electrostatic interaction is the main force responsible for the adsorption between proteins and ZnO. The isoelectric point of the protein does not play any role in the morphology of the ZnO crystallites. Morphology and crystallographic orientation of ZnO crystallites remain practically unaltered when globular proteins are employed during the synthesis. On the other hand, the use of an elongated protein causes a significant increase in the size of the ZnO crystallite. The synthesis under investigation provides a base for the generation of innovative composites with combined properties of ZnO and biological functions of native proteins.


* Correspondence address, Dr. Luciana Pitta Bauermann, Max-Planck-Institut für Metallforschung and, Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstr. 3, D-70569, Stuttgart, Germany, Tel.: +49 711 689 3231, Fax: +49 711 689 3131, E-mail:

References

[1] A.M.Belcher, P.K.Hansma, G.D.Stucky, D.E.Morse: Acta Mater.46 (1998) 733.Suche in Google Scholar

[2] H.Cölfen, S.Mann: Angew. Chem. Int. Ed.42 (2003) 2350.Suche in Google Scholar

[3] Y.Fan, K.Duan, R.Wang: Biomaterials26 (2005) 1623.10.1166/jnn.2007.501Suche in Google Scholar

[4] T.Pellegrino, S.Kudera, T.Liedl, A.M.Javier, L.Mann, W.J.Parak: Small1 (2005) 48.Suche in Google Scholar

[5] J.Aizenberg: Adv. Mater.16 (2004) 1295.10.1002/adma.200400759Suche in Google Scholar

[6] C.M.Niemeyer: Angew. Chem. Int. Ed.40 (2001) 412810.1002/anie.201302288Suche in Google Scholar

[7] C.Sanchez, B.Julian, P.Belleville, M.Popall: J. Mater. Chem.15 (2005) 3559.Suche in Google Scholar

[8] E.Topoglidis, A.E.G.Cass, B.O9Regan, J. R.Durrant: J. Electroanal. Chem. Interfacial Electrochem.517 (2001) 20.Suche in Google Scholar

[9] R.C.Hoffmann, S.J.Jia, L.P.H.Jeurgens, J.Bill, F.Aldinger: Mater. Sci. Eng., C26 (2006) 41.Suche in Google Scholar

[10] B.J.Tarasevich, P.C.Rieke, J.Liu: Chem. Mater.8 (1996) 292.Suche in Google Scholar

[11] S.H.Yu, H.Cölfen: J. Mater. Chem.14 (2004) 2124.Suche in Google Scholar

[12] G.Wegner, P.Baum, M.Müller, J.Norwig, K.Landfester: Macromol. Symp.175 (2001) 349.Suche in Google Scholar

[13] P.Gerstel, R.C.Hoffmann, P.Lipowsky, L.P.H.Jeurgens, J.Bill, F.Aldinger: Chem. Mater.18 (2006) 179Suche in Google Scholar

[14] T.Coradin, J.Livage: Colloids Surf., B21 (2001) 329.Suche in Google Scholar

[15] J.Yang, D.S.Hage: Anal. Chem.66 (1994) 2719.Suche in Google Scholar

[16] P.Camilleri: Capillary Electrophoresis, CRC: Boca Raton, Florida (1998).10.1016/S0021-9673(01)96024-8Suche in Google Scholar

[17] L.P.Bauermann, J.Bill, F.Aldinger: J. Phys. Chem. B110 (2006) 5182.Suche in Google Scholar

[18] C.M.Zaremba, A.M.Belcher, M.Fritz, Y.Li, S.Mann, P.K.Hansma, D.E.Morse, J.S.Speck, G.D.Stucky: Chem. Mater.8 (1996) 679.Suche in Google Scholar

[19] D.N.Kendall: Applied Infrared Spectroscopy, Reihold Publishing Corporation, Chapman & Hall, Ltd., London (1966).Suche in Google Scholar

[20] M.L.Fisher, M.Colic, M.P.Rao, F.L.Lange: J. Am. Ceram. Soc.84 (2001) 713.Suche in Google Scholar

[21] L.J.Bellamy: The Infra-red Spectra of Complex Molecules, John Wiley and Sons, Inc., New York, (1975).10.1007/978-94-011-6017-9Suche in Google Scholar

[22] N.Brandes, P.B.Welzel, C.Werner, L.W.Kroh: J. Colloid Interface Sci.299 (2006) 56.Suche in Google Scholar

[23] J.T.Pelton, L.R.McLean: Anal. Biochem.277 (2000) 167.Suche in Google Scholar

[24] S.J.McClellan, E.I.Franses: Colloids Surf., A260 (2005) 265.Suche in Google Scholar

[25] B.E.Warren: X-ray diffraction, Addison-Wesley: Reading MA (1969).Suche in Google Scholar

[26] K.Vanheusden, W.L.Warren, C.H.Seager, D.R.Tallant, J.A.Voigt, B.E.Gnade: J. Appl. Phys.79 (1996) 7983.Suche in Google Scholar

[27] A.F.Kohan, G.Ceder, D.Morgan, C.G.V.d. Walle: Phys. Rev. B61 (2000) 15019.Suche in Google Scholar

[28] N.Ohashi, N.Ebisawa, T.Sekiguchi, I.Sakaguchi, Y.Wada, T.Takenaka, H.Haneda: Appl. Phys. Lett.86 (2005) 091902.10.1063/1.4792376Suche in Google Scholar

[29] X.L.Wu, G.G.Siu, C.L.Fu, H.C.Ong: Appl. Phys. Lett.78 (2001) 2285.Suche in Google Scholar

[30] S.A.M.Lima, F.A.Sigoli, M.Jafelicci, M.R.Davolos: Int. J. Inorg. Mater.3 (2001) 749.Suche in Google Scholar

[31] P.P.Pompa, L.Blasi, R.Longo, R.Cingolani, G.Ciccarella, G.Vasapollo, R.Rinaldi, A.Rizzello, C.Storelli, M.Maffia: Phys. Rev. E67 (2003) 041902.Suche in Google Scholar

[32] P.P.Pompa, A.Bramanti, G.Maruccio, R.Cingolani, F.D.Rienzo, S.Corni, R.D.Felice, R.Rinaldi: J. Chem. Phys.122 (2005) 181102.Suche in Google Scholar

[33] Sigma Aldrich9s Data Sheet.Suche in Google Scholar

Received: 2006-9-15
Accepted: 2007-6-20
Published Online: 2013-05-23
Published in Print: 2007-09-01

© 2007, Carl Hanser Verlag, München

Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101536/html
Button zum nach oben scrollen