Thermodynamic modelling in the ZrO2–La2O3–Y2O3–Al2O3 system
-
O. Fabrichnaya
, M. Zinkevich and F. Aldinger
Abstract
The thermodynamic database for the ZrO2 – La2O3 – Y2O3 – Al2O3 system has been derived using previous descriptions for the six binary systems and the ternary ZrO2 – La2O3 – Al2O3 system. The parameters of the Y2O3 – Al2O3 system were adjusted due to changes in the Y2O3 thermody-namic parameters. The thermodynamic parameters of the La2O3 – Y2O3 system were slightly changed to get consistency between calculations and new experimental results for the ZrO2 – La2O3 – Y2O3 ternary system. Diverse kinds of phase diagrams of the ZrO2 – La2O3 – Y2O3 and La2O3 – Y2O3 – Al2O3 ternary systems have been calculated. The present thermodynamic description of the quaternary system is consistent with available experimental results for lower-order systems. It was used to calculate isoplethal sections for compositions related to thermal barrier coating (TBC) and its interaction with thermally grown oxide Al2O3. The T0-lines have been calculated for diffusionless transformations between fluorite, tetragonal, monoclinic and pyrochlore phases in the ZrO2 – LaO1.5 system as well as driving forces for partitioning of non-equilibrium phase into equilibrium phase assemblages. These data could be applied for determination of desirable ranges of material composition for TBC.
References
[1] M.Matsumoto, H.Takayama, D.Yokoe, K.Mukai, H.Matsubara, Y.Kagiya, Y.Sugita: Scripta Mater.54 (2006) 2035.Search in Google Scholar
[2] R.Vassen, F.Traeger, D.Stoever: Int. J. Appl. Ceram. Technol.1 (2004) 351.Search in Google Scholar
[3] M.Colombo: Brit. Ceram. Trans.98 (1999) 271.10.1093/oxfordjournals.afraf.a008024Search in Google Scholar
[4] F.W.Poulsen, N.van der Puil: Solid State Ionics53 (1992) 777.Search in Google Scholar
[5] M.Mori, T.Abe, H.Itoh, O.Yamamoto, G.Q.Shen, YTakeda, N.Imanishi: Solid State Ionics123 (1999) 113.10.1039/c1cc00070eSearch in Google Scholar
[6] S.A.Speakman, R.D.Carneim, E.A.Payzant, T.R.Armstrong: J. Mater. Eng. Perform.13 (2004) 303.Search in Google Scholar
[7] A.Ota, Y.Matsumura, M.Yoshinaka, K.Hirota, O.Yamaguchi: J. Mater. Sci. Lett.17 (1998) 1998.Search in Google Scholar
[8] E.R.Andrievskaya, V.P.Red9ko: Mater. Sci. Forum518 (2006) 343.Search in Google Scholar
[9] E.R.Andrievskaya, L.M.Lopato: Powder Metall. Met. Ceram.39 (2000) 445.Search in Google Scholar
[10] M.Chen, A.N.Grundy, B.Hallstedt, L.J.Gauckler: Calphad30 (2006) 489.10.1016/j.calphad.2005.06.006Search in Google Scholar
[11] O.Fabrichnaya, S.Lakiza, Ch.Wang, M.Zinkevich, F.Aldinger: J. Alloys Compd. (2007) in press.Search in Google Scholar
[12] O.Fabrichnaya, M.Zinkevich, F.Aldinger: Int. J. Mat. Res.97 (2006) 1495.Search in Google Scholar
[13] M.Chen, B.Hallstedt, L.J.Gauckler: Calphad29 (2005) 103.10.1016/j.calphad.2005.06.006Search in Google Scholar
[14] M.Hrovat, D.Kuscer, J.Holc, S.Bernik, D.Kolar: J. Mater. Sci. Lett.15 (1996) 339.Search in Google Scholar
[15] S.M.Lakiza, L.M.Lopato: J. Eur. Ceram. Soc.25 (2005) 1373.Search in Google Scholar
[16] R.Leckie, C.G.Levi: Phase relations in the ZrO2–La2O3–Al2O3 system, Private communication, 2003, University of California in Santa Barbara.Search in Google Scholar
[17] Y.Kanke, A.Navrotsky: J. Solid State Chem.141 (1998) 424.Search in Google Scholar
[18] T.Kyomen, M.Itoh: J. Therm. Anal. Calorim.69 (2002) 813.Search in Google Scholar
[19] M.Hillert: J. Alloys Compd.320 (2001) 161.10.1016/S0925-8388(00)01481-XSearch in Google Scholar
[20] Ch.Wang, M.Zinkevich, F.Aldinger: J. Am. Ceram. Soc.89 (2006) 3751.Search in Google Scholar
[21] M.Zinkevich: Prog. Mater. Sci. (2006) in press.Search in Google Scholar
[22] O.Fabrichnaya, C.Wang, M.Zinkevich, C.G.Levi, F.Aldinger: J. Phase Equilibria and Diffusion26 (2005) 591.Search in Google Scholar
[23] S.Lakiza, O.Fabrichnaya, M.Zinkevich, F.Aldinger: J. Alloys Compd.420 (2006) 237.Search in Google Scholar
[24] O.Fabrichnaya, S.Lakiza, C.Wang, M.Zinkevich, C.G.Levi, F.Aldinger: J. Phase Equilibria and Diffusion27 (2006) 343.Search in Google Scholar
[25] S.M.Lakiza, L.M.Lopato: J. Am. Ceram. Soc.80 (1997) 893.Search in Google Scholar
[26] L.M.Lopato, B.S.Nigmanov, A.V.Shevchenko, Z.A.Zaiseva: Inorg. Mater.22 (1986) 678.Search in Google Scholar
[27] J.Coutures, M.Foex: J. Solid State Chem.11 (1974) 294.Search in Google Scholar
[28] M.Mizino, A.Rouanet, T.Yamada, T.Noguchi: Yogyo Kyokaishi84 (1976) 324.Search in Google Scholar
[29] V.P.Gorelov, Z.S.Martem9yanova, V.B.Balakireva: Inorg. Mater.35 (1999) 153.Search in Google Scholar
© 2007, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Computational Thermochemistry
- Gunnar Eriksson 65 years
- Basic
- Vegard's law: a fundamental relation or an approximation?
- Is it a compound or cluster energy formalism?
- Post-optimization elimination of inverted miscibility gaps
- Thermodynamic evaluation of the Au–Sn system
- Applications of thermodynamic calculations to Mg alloy design: Mg–Sn based alloy development
- Thermodynamic modeling of the CoO–SiO2 and CoO–FeO–Fe2O3–SiO2 systems
- Scheil–Gulliver simulation with partial redistribution of fast diffusers and simultaneous solid–solid phase transformations
- Analysis of X-ray extinction due to homogeneously distributed dislocations – Bragg case
- Applied
- Thermodynamic modelling in the ZrO2–La2O3–Y2O3–Al2O3 system
- Thermodynamic optimisation of the FeO–Fe2O3–SiO2 (Fe–O–Si) system with FactSage
- Reassessment of the Al–Mn system and a thermodynamic description of the Al–Mg–Mn system
- Application of FactSage thermodynamic modeling of recycled slags (Al2O3–CaO–FeO–Fe2O3–SiO2–PbO–ZnO) in the treatment of wastes from end-of-life-vehicles
- Bio-inspired syntheses of ZnO-protein composites
- Preparation and characterization of cobalt–bismuth nano- and micro-particles
- Strain rate dependency on deformation texture for pure polycrystalline tantalum
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Computational Thermochemistry
- Gunnar Eriksson 65 years
- Basic
- Vegard's law: a fundamental relation or an approximation?
- Is it a compound or cluster energy formalism?
- Post-optimization elimination of inverted miscibility gaps
- Thermodynamic evaluation of the Au–Sn system
- Applications of thermodynamic calculations to Mg alloy design: Mg–Sn based alloy development
- Thermodynamic modeling of the CoO–SiO2 and CoO–FeO–Fe2O3–SiO2 systems
- Scheil–Gulliver simulation with partial redistribution of fast diffusers and simultaneous solid–solid phase transformations
- Analysis of X-ray extinction due to homogeneously distributed dislocations – Bragg case
- Applied
- Thermodynamic modelling in the ZrO2–La2O3–Y2O3–Al2O3 system
- Thermodynamic optimisation of the FeO–Fe2O3–SiO2 (Fe–O–Si) system with FactSage
- Reassessment of the Al–Mn system and a thermodynamic description of the Al–Mg–Mn system
- Application of FactSage thermodynamic modeling of recycled slags (Al2O3–CaO–FeO–Fe2O3–SiO2–PbO–ZnO) in the treatment of wastes from end-of-life-vehicles
- Bio-inspired syntheses of ZnO-protein composites
- Preparation and characterization of cobalt–bismuth nano- and micro-particles
- Strain rate dependency on deformation texture for pure polycrystalline tantalum
- Notifications
- DGM News