Bio-inspired syntheses of ZnO-protein composites
-
Luciana Pitta Bauermann
Abstract
The influence of five different proteins on the crystallization of ZnO was investigated. The aim was to create bio-inspired artificially-synthesized materials by applying the knowledge acquired about naturally occurring inorganic/bio-organic composites. We found that the lower the isoelectric point of a protein, the more efficient is the adsorption of this protein at ZnO. Thus, electrostatic interaction is the main force responsible for the adsorption between proteins and ZnO. The isoelectric point of the protein does not play any role in the morphology of the ZnO crystallites. Morphology and crystallographic orientation of ZnO crystallites remain practically unaltered when globular proteins are employed during the synthesis. On the other hand, the use of an elongated protein causes a significant increase in the size of the ZnO crystallite. The synthesis under investigation provides a base for the generation of innovative composites with combined properties of ZnO and biological functions of native proteins.
References
[1] A.M.Belcher, P.K.Hansma, G.D.Stucky, D.E.Morse: Acta Mater.46 (1998) 733.Search in Google Scholar
[2] H.Cölfen, S.Mann: Angew. Chem. Int. Ed.42 (2003) 2350.Search in Google Scholar
[3] Y.Fan, K.Duan, R.Wang: Biomaterials26 (2005) 1623.10.1166/jnn.2007.501Search in Google Scholar
[4] T.Pellegrino, S.Kudera, T.Liedl, A.M.Javier, L.Mann, W.J.Parak: Small1 (2005) 48.Search in Google Scholar
[5] J.Aizenberg: Adv. Mater.16 (2004) 1295.10.1002/adma.200400759Search in Google Scholar
[6] C.M.Niemeyer: Angew. Chem. Int. Ed.40 (2001) 412810.1002/anie.201302288Search in Google Scholar
[7] C.Sanchez, B.Julian, P.Belleville, M.Popall: J. Mater. Chem.15 (2005) 3559.Search in Google Scholar
[8] E.Topoglidis, A.E.G.Cass, B.O9Regan, J. R.Durrant: J. Electroanal. Chem. Interfacial Electrochem.517 (2001) 20.Search in Google Scholar
[9] R.C.Hoffmann, S.J.Jia, L.P.H.Jeurgens, J.Bill, F.Aldinger: Mater. Sci. Eng., C26 (2006) 41.Search in Google Scholar
[10] B.J.Tarasevich, P.C.Rieke, J.Liu: Chem. Mater.8 (1996) 292.Search in Google Scholar
[11] S.H.Yu, H.Cölfen: J. Mater. Chem.14 (2004) 2124.Search in Google Scholar
[12] G.Wegner, P.Baum, M.Müller, J.Norwig, K.Landfester: Macromol. Symp.175 (2001) 349.Search in Google Scholar
[13] P.Gerstel, R.C.Hoffmann, P.Lipowsky, L.P.H.Jeurgens, J.Bill, F.Aldinger: Chem. Mater.18 (2006) 179Search in Google Scholar
[14] T.Coradin, J.Livage: Colloids Surf., B21 (2001) 329.Search in Google Scholar
[15] J.Yang, D.S.Hage: Anal. Chem.66 (1994) 2719.Search in Google Scholar
[16] P.Camilleri: Capillary Electrophoresis, CRC: Boca Raton, Florida (1998).10.1016/S0021-9673(01)96024-8Search in Google Scholar
[17] L.P.Bauermann, J.Bill, F.Aldinger: J. Phys. Chem. B110 (2006) 5182.Search in Google Scholar
[18] C.M.Zaremba, A.M.Belcher, M.Fritz, Y.Li, S.Mann, P.K.Hansma, D.E.Morse, J.S.Speck, G.D.Stucky: Chem. Mater.8 (1996) 679.Search in Google Scholar
[19] D.N.Kendall: Applied Infrared Spectroscopy, Reihold Publishing Corporation, Chapman & Hall, Ltd., London (1966).Search in Google Scholar
[20] M.L.Fisher, M.Colic, M.P.Rao, F.L.Lange: J. Am. Ceram. Soc.84 (2001) 713.Search in Google Scholar
[21] L.J.Bellamy: The Infra-red Spectra of Complex Molecules, John Wiley and Sons, Inc., New York, (1975).10.1007/978-94-011-6017-9Search in Google Scholar
[22] N.Brandes, P.B.Welzel, C.Werner, L.W.Kroh: J. Colloid Interface Sci.299 (2006) 56.Search in Google Scholar
[23] J.T.Pelton, L.R.McLean: Anal. Biochem.277 (2000) 167.Search in Google Scholar
[24] S.J.McClellan, E.I.Franses: Colloids Surf., A260 (2005) 265.Search in Google Scholar
[25] B.E.Warren: X-ray diffraction, Addison-Wesley: Reading MA (1969).Search in Google Scholar
[26] K.Vanheusden, W.L.Warren, C.H.Seager, D.R.Tallant, J.A.Voigt, B.E.Gnade: J. Appl. Phys.79 (1996) 7983.Search in Google Scholar
[27] A.F.Kohan, G.Ceder, D.Morgan, C.G.V.d. Walle: Phys. Rev. B61 (2000) 15019.Search in Google Scholar
[28] N.Ohashi, N.Ebisawa, T.Sekiguchi, I.Sakaguchi, Y.Wada, T.Takenaka, H.Haneda: Appl. Phys. Lett.86 (2005) 091902.10.1063/1.4792376Search in Google Scholar
[29] X.L.Wu, G.G.Siu, C.L.Fu, H.C.Ong: Appl. Phys. Lett.78 (2001) 2285.Search in Google Scholar
[30] S.A.M.Lima, F.A.Sigoli, M.Jafelicci, M.R.Davolos: Int. J. Inorg. Mater.3 (2001) 749.Search in Google Scholar
[31] P.P.Pompa, L.Blasi, R.Longo, R.Cingolani, G.Ciccarella, G.Vasapollo, R.Rinaldi, A.Rizzello, C.Storelli, M.Maffia: Phys. Rev. E67 (2003) 041902.Search in Google Scholar
[32] P.P.Pompa, A.Bramanti, G.Maruccio, R.Cingolani, F.D.Rienzo, S.Corni, R.D.Felice, R.Rinaldi: J. Chem. Phys.122 (2005) 181102.Search in Google Scholar
[33] Sigma Aldrich9s Data Sheet.Search in Google Scholar
© 2007, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Computational Thermochemistry
- Gunnar Eriksson 65 years
- Basic
- Vegard's law: a fundamental relation or an approximation?
- Is it a compound or cluster energy formalism?
- Post-optimization elimination of inverted miscibility gaps
- Thermodynamic evaluation of the Au–Sn system
- Applications of thermodynamic calculations to Mg alloy design: Mg–Sn based alloy development
- Thermodynamic modeling of the CoO–SiO2 and CoO–FeO–Fe2O3–SiO2 systems
- Scheil–Gulliver simulation with partial redistribution of fast diffusers and simultaneous solid–solid phase transformations
- Analysis of X-ray extinction due to homogeneously distributed dislocations – Bragg case
- Applied
- Thermodynamic modelling in the ZrO2–La2O3–Y2O3–Al2O3 system
- Thermodynamic optimisation of the FeO–Fe2O3–SiO2 (Fe–O–Si) system with FactSage
- Reassessment of the Al–Mn system and a thermodynamic description of the Al–Mg–Mn system
- Application of FactSage thermodynamic modeling of recycled slags (Al2O3–CaO–FeO–Fe2O3–SiO2–PbO–ZnO) in the treatment of wastes from end-of-life-vehicles
- Bio-inspired syntheses of ZnO-protein composites
- Preparation and characterization of cobalt–bismuth nano- and micro-particles
- Strain rate dependency on deformation texture for pure polycrystalline tantalum
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Computational Thermochemistry
- Gunnar Eriksson 65 years
- Basic
- Vegard's law: a fundamental relation or an approximation?
- Is it a compound or cluster energy formalism?
- Post-optimization elimination of inverted miscibility gaps
- Thermodynamic evaluation of the Au–Sn system
- Applications of thermodynamic calculations to Mg alloy design: Mg–Sn based alloy development
- Thermodynamic modeling of the CoO–SiO2 and CoO–FeO–Fe2O3–SiO2 systems
- Scheil–Gulliver simulation with partial redistribution of fast diffusers and simultaneous solid–solid phase transformations
- Analysis of X-ray extinction due to homogeneously distributed dislocations – Bragg case
- Applied
- Thermodynamic modelling in the ZrO2–La2O3–Y2O3–Al2O3 system
- Thermodynamic optimisation of the FeO–Fe2O3–SiO2 (Fe–O–Si) system with FactSage
- Reassessment of the Al–Mn system and a thermodynamic description of the Al–Mg–Mn system
- Application of FactSage thermodynamic modeling of recycled slags (Al2O3–CaO–FeO–Fe2O3–SiO2–PbO–ZnO) in the treatment of wastes from end-of-life-vehicles
- Bio-inspired syntheses of ZnO-protein composites
- Preparation and characterization of cobalt–bismuth nano- and micro-particles
- Strain rate dependency on deformation texture for pure polycrystalline tantalum
- Notifications
- DGM News