Startseite Nanoindentation behavior and mechanical properties measurement of polymeric materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nanoindentation behavior and mechanical properties measurement of polymeric materials

  • Robert F. Cook und Michelle L. Oyen
Veröffentlicht/Copyright: 23. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

During sharp contacts, polymeric materials can exhibit elastic (reversible), plastic (instantaneous irreversible), and viscous (time-dependent irreversible) deformation. Due to viscous effects commonly observed in experiments conducted on polymeric materials, the analytical methods developed for instrumented indentation testing (“nanoindentation”) of elastic-plastic materials cannot be used to determine polymer mechanical properties. Here, a viscous-elastic-plastic sharp indentation model is reframed into normalized coordinates. The updated scheme allows the mechanical properties of polymeric materials to be determined simply from single- or multiple-cycle nanoindentation tests; output parameters are the relative resistance to plastic vs elastic deformation during indentation and the relative time scales for viscous flow during the contact event. The scheme allows the indentation behavior of all materials to be placed on a single map.


* Correspondence address, Robert F. Cook, Ceramics Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8520, Gaithersburg, MD 20899, USA, Tel.: +1 301 975 3207Fax: +1 301 975 5334 E-mail:

References

[1] D.Tabor: The Hardness of Metals, Oxford University Press (at the Clarendon Press), London (1951).Suche in Google Scholar

[2] ASTM D2240-0, Standard Test Method for Rubber Property–Durometer Hardness (Types A, B, C, D, DO, E, M, O, OO, OOO, OOO-S, and R).Suche in Google Scholar

[3] B.R.Lawn, V.R.Howes: J. Mater. Sci.16 (1981) 2745.10.1007/BF02402837Suche in Google Scholar

[4] W.C.Oliver, G.M.Pharr: J. Mater. Res.7 (1992) 1564.10.1557/JMR.1992.1564Suche in Google Scholar

[5] J.Thurn, R.F.Cook: J. Mater. Res.19 (2004) 124.10.1557/jmr.2004.19.1.124Suche in Google Scholar

[6] M.E.Broz, R.F.Cook, D.L.Whitney: Am. Mineral.91 (2006) 135.10.2138/am.2006.1844Suche in Google Scholar

[7] D.J.Morris, R.F.Cook: J. Am. Ceram. Soc.87 (2004) 1494.10.1111/j.1551-2916.2004.01494.xSuche in Google Scholar

[8] R.F.Cook, E.G.Liniger: J. Electrochem. Soc.146 (1999) 4439.10.1149/1.1392656Suche in Google Scholar

[9] Y.Toivola, J.Thurn, R.F.Cook: J. Electrochem. Soc.149 (2002) F9.10.1149/1.1447225Suche in Google Scholar

[10] B.J.Briscoe, L.Fiori, E.Pelillo: J. Phys. D: Appl. Phys.31 (1998) 2395.10.1088/0022-3727/31/19/006Suche in Google Scholar

[11] M.L.Oyen, R.F.Cook: J. Mater. Res.18 (2003) 139.10.1557/JMR.2003.0020Suche in Google Scholar

[12] H.Hertz: Miscellaneous Papers (translated by Jones, D.E., Schott, G.A.), Macmillan and Co., London (1896), 178180.Suche in Google Scholar

[13] I.N.Sneddon: Int. J. Engng. Sci.3 (1965) 47.10.1016/0020-7225(65)90019-4Suche in Google Scholar

[14] J.S.Field, M.V.Swain: J. Mater. Res.8 (1993) 297.10.1557/JMR.1993.0297Suche in Google Scholar

[15] E.H.Lee, J.R.M.Radok: J. Appl. Mech.27 (1960) 438.10.1115/1.3644020Suche in Google Scholar

[16] H.Lu, B.Wang, J.Ma, G.Huang, H.Viswanathan: Mech. Time-dep. Mater.7 (2003) 189.10.1023/B:MTDM.0000007217.07156.9bSuche in Google Scholar

[17] M.L.Oyen, R.F.Cook, N.R.Moody, J.A.Emerson: J. Mater. Res.19 (2004) 2487.10.1557/JMR.2004.0308Suche in Google Scholar

[18] F.Mammeri, E.Le Bourhis, L.Rozes, C.Sanchez, A.Huignard, D.Lefevre: J. Non-Crystall. Solids 345 &346 (2004) 610.10.1016/j.jnoncrysol.2004.08.107Suche in Google Scholar

[19] M.L.Oyen, C.-C.Ko: J. Mater. Sci. Mater. Med. (2006), in press.Suche in Google Scholar

[20] W.N.Findley, J.Lai, K.Onaran: Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover, New York (1989).Suche in Google Scholar

[21] M.L.Oyen: Philos. Mag.86 (2006) 5625.10.1080/14786430600740666Suche in Google Scholar

[22] M.Sakai: J. Mater. Res.14 (1999) 3630.10.1557/JMR.1999.0490Suche in Google Scholar

[23] J.J.Vlassak, W.D.Nix: Philos. Mag. A67 (1993) 1045.10.1080/01418619308224756Suche in Google Scholar

[24] A.E.H.Love: Treatise on the Mathematical Theory of Elasticity, 3rd Edition, Dover, New York (1944).Suche in Google Scholar

[25] C.Macosko: Rheology, Wiley-VCH, New York (1994).Suche in Google Scholar

[26] Y.Toivola, A.Stein, R.F.Cook: J. Mater. Res.19 (2004) 260.10.1557/jmr.2004.19.1.260Suche in Google Scholar

[27] M.F.Ashby, A.G.Evans, N.A.Fleck, L.J.Gibson, J.W.Hutchinson, H.N.G.Wadley: Metal Foams: A Design Guide, Butterworth-Heinemann (Elsevier), Burlington, MA (2000).Suche in Google Scholar

[28] M.F.Doerner, W.D.Nix: J. Mater. Res.1 (1986) 601.10.1557/JMR.1986.0601Suche in Google Scholar

[29] M.Sakai, S.Shimizu: J. Non-Crystall. Solids282 (2001) 236.10.1016/S0022-3093(01)00316-7Suche in Google Scholar

[30] D.J.Morris, S.B.Myers, R.F.Cook: J. Mater. Res.19 (2004) 165.10.1557/jmr.2004.19.1.165Suche in Google Scholar

[31] M.L.Oyen: J. Mater. Res.20 (2005) 2094.10.1557/JMR.2005.0259Suche in Google Scholar

[32] J.M.Mattice, A.G.Lau, M.L.Oyen, R.W.Kent: J. Mater. Res.21 (2006) 2003.10.1557/jmr.2006.0243Suche in Google Scholar

[33] G.T.Mase, G.E.Mase: Continuum Mechanics for Engineers, 2nd Ed., CRC, Boca Raton, FL (1999).10.1201/9781439832578Suche in Google Scholar

[34] C.A.Tweedie, K.J.Van Vliet: J. Mater. Res.21 (2006) 1576.10.1557/jmr.2006.0197Suche in Google Scholar

Received: 2006-10-11
Accepted: 2007-1-14
Published Online: 2013-05-23
Published in Print: 2007-05-01

© 2007, Carl Hanser Verlag, München

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101480/html?lang=de
Button zum nach oben scrollen