Startseite The application of knowledge management and TRIZ for solving the safe shutdown capability of fire alarms in nuclear power plants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The application of knowledge management and TRIZ for solving the safe shutdown capability of fire alarms in nuclear power plants

  • C.-N. Wang , H.-P. Chen , M.-H. Hsueh und F.-L. Chin
Veröffentlicht/Copyright: 20. Oktober 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Fukushima nuclear disaster in 2011 has raised widespread concern over the safety of nuclear power plants. This study employed knowledge management in conjunction with the Teoriya Resheniya Izobreatatelskih Zadatch (TRIZ) method in the formulation of a database to facilitate the evaluation of post-fire safe shutdown capability with the aim of safeguarding nuclear facilities in the event of fire. The proposed approach is meant to bring facilities in line with US Nuclear Regulatory Commission (NRC) standards. When implemented in a case study of an Asian nuclear power plant, our method proved highly effective in the detection of 22 cables that fell short of regulatory requirements, thereby reducing 850,000 paths to 0. This study could serve as reference for industry and academia in the development of systematic approaches to the upgrading of nuclear power plants.

Kurzfassung

Die Nuklearkatastrophe von Fukushima 2011 führte zu weitverbreiteten Bedenken in Bezug auf die Sicherheit von Kernkraftwerken. In dieser Studie wurde Wissensmanagement in Verbindung mit der Teoriya Resheniya Izobreatatelskih Zadatch (TRIZ) Methode bei der Formulierung eines Datenbestands zur Erleichterung der Bewertung des sicheren Abschaltens nach einem Brand angewendet mit dem Ziel der Sicherung von Kernkraftwerken im Brandfall. Der vorgeschlagene Ansatz soll kerntechnische Anlagen auf einen Stand mit den Standards der US Nuclear Regulatory Commission (NRC) bringen. Wendet man diese Methode im Rahmen einer Fallstudie bei einem asiatischen Kernkraftwerk an, zeigt sich die Methode sehr effektiv beim Nachweis von 22 Leitungen die den gesetzlichen Anforderungen nicht genügen. Diese Studie könnte als Referenzmethode für Industrie und Academia dienen bei der Entwicklung eines systematischen Ansatzes zur Verbesserung der Sicherheit von Kernkraftwerken.


* Corresponding author: E-mail:

References

1 AltshullerG., ShulyakL., RodmanS.: The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity. Technical Innovation Ctr.: Worcester, MA, 1999.Suche in Google Scholar

2 DebowskiS.: Knowledge Management. Wiley India Pvt. Ltd., 2007.Suche in Google Scholar

3 Generic Letters GL 83-33, Position 2, 1983. Water Curtain, October, 1983.10.7901/2169-3358-1983-1-33Suche in Google Scholar

4 Generic Letters GL 86-10, Position 3.6.2. Fire Stop, April, 1986. (1.) NRC BTP APCSB 9.5-1 App. A, (1976) “Fire Protection guide for Nuclear Power Plants, May, 1986.Suche in Google Scholar

5 HuaZ., YangJ., CoulibalyS., ZhangB.: Integration TRIZ with problem-solving tools: a literature review from 1995 to 2006. International Journal of Business Innovation and Research1 (2006) 11112810.1504/IJBIR.2006.011091Suche in Google Scholar

6 Information Notice 84-09. Lessons Learned from NRC Inspections of Fire Protection Safe Shutdown Systems (10 CFR 50, Appendix R), 1984.Suche in Google Scholar

7 MannD.: Hands-on Systematic Innovation. IFR Press: Clevedon, UK, 2007.Suche in Google Scholar

8 National Fire Protection Association 805, Performance-based Standard for Fire Protection for Light Water Reactor Electric Generating Plants, 2001 Edition.Suche in Google Scholar

9 NEI 00-01, Rev.2. Guidance for Post Fire Safe Shut Down Circuit Analysis, 2009.Suche in Google Scholar

10 NFPA805 National Fire Protection Association 805, Performance-based Standard for Fire Protection for Light Water Reactor Electric Generating Plants, 2001 Edition.Suche in Google Scholar

11 NRC Branch Technical Position (BTP) 9.5-1. Guidelines For Fire Protection For Nuclear Power Plants, CMEB, July 1981.Suche in Google Scholar

12 NRC BTP APCSB 9.5-1 App. A. Fire Protection guide for Nuclear Power Plants, 1976.Suche in Google Scholar

13 NRC Standard Review Plan 9.5-1. Fire Protection Program, November, 1975.Suche in Google Scholar

14 NRC, 1979. 10 CFR 50 Appendix R to Part 50 – Fire Protection Program For Nuclear Power Facilities Operating Prior To January 1.Suche in Google Scholar

15 NRC, 1984. Information Notice 84-094 Guidance IX.Suche in Google Scholar

16 NRC, 2007. RG 1.189, Rev. 2 Section 5.3, Fire Protection of Safe-Shutdown Capabilities.Suche in Google Scholar

17 NRC, 2012. 10 CFR 50 Appendix A to Part 50, General Design Criterion 3.10.5860/CHOICE.50-0634Suche in Google Scholar

18 NUREG-1852. Demonstrating the Feasibility and Reliability of Operator Manual Actions in Response to Fire, Final Report, October, 2007.Suche in Google Scholar

19 NUREG-1924. Electric Raceway Fire Barrier Systems in U.S. Nuclear, 2010.Suche in Google Scholar

20 RosnerD., GroteB., Hartman, K, Hofling, B, GuerickeO.: From natural language documents to sharable product knowledge: a knowledge engineering approach. In: BorghoffU.M., PareschiR. (Eds.), Information technology for knowledge management, pp. 3551, Springer Verlag, 199810.1007/978-3-662-03723-2_8Suche in Google Scholar

21 Society of Fire Protection Engineers, 2003. SFPE Hand Book.Suche in Google Scholar

22 TPC Maanshan Nuclear Power Plant, 1999. Final Safety Analyze Report.Suche in Google Scholar

23 TRIZ: A New Approach to Innovative Engineering and Problem Solving 1996 AME Annual Conference in Milwaukee, WI, November 5–8.Suche in Google Scholar

24 USNRC Generic Letter 77-02, 1977. Fire Protection Functional Responsibilities, Administrative Control and Quality Assurance.Suche in Google Scholar

Received: 2017-03-02
Published Online: 2017-10-20
Published in Print: 2017-10-26

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110794/html?lang=de
Button zum nach oben scrollen