Home Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals
Article
Licensed
Unlicensed Requires Authentication

Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals

  • Xie Linjun , Xue Guohong and Zhang Ming
Published/Copyright: October 20, 2017
Become an author with De Gruyter Brill

Abstract

The friction force between the contact surfaces of a reactor internal hold-down spring (HDS) and core barrel flanges can directly influence the axial stiffness of an HDS. However, friction coefficient cannot be obtained through theoretical analysis. This study performs a mathematical deduction of the physical model of an HDS. Moreover, a mathematical model of axial load P, displacement δ, and flexibility coefficient is established, and a set of test apparatuses is designed to simulate the preloading process of the HDS. According to the experimental research and theoretical analysis, P-δ curves and the flexibility coefficient λ are obtained in the loading processes of the HDS. The friction coefficient f of the M1000 HDS is further calculated as 0.224. The displacement limit load value (4,638 kN) can be obtained through a displacement limit experiment. With the friction coefficient considered, the theoretical load is 4,271 kN, which is relatively close to the experimental result. Thus, the friction coefficient exerts an influence on the displacement limit load P. The friction coefficient should be considered in the design analysis for HDS.

Kurzfassung

Die Reibungskraft zwischen den Kontaktoberflächen von Niederhaltefedern (HDS) und Kernrohrflanschen kann die axiale Steifigkeit von HDS direkt beeinflussen. Dieser Beitrag stellt eine mathematische Deduktion des physikalischen Modells von HDS vor. Ein mathematisches Modell der Axialbelastung P, der Verschiebung δ und des Flexibilitätskoeffizienten wird aufgestellt und eine Reihe von Testapparaten entwickelt um den Vorspannungsprozess von HDS zu simulieren. Auf der Basis der experimentellen Ergebnisse und der theoretischen Analyse erhält man P-δ Kurven und den Flexibilitätskoeffizienten λ. Der Wert des Reibungskoeffizienten f der M1000 HDS errechnet sich zu 0.224. Der Wert der Verschiebungsbelastungsgrenze (4,638 kN) kann experimentell bestimmt werden. Mit dem betrachteten Reibungskoeffizient ist die theoretische Ladung 4,271 kN, was relativ nahe bei den experimentellen Ergebnissen liegt. Somit übt der Reibungskoeffizient einen Einfluss auf die Verschiebungsbelastungsgrenze P aus und sollte deshalb bei der Auslegung berücksichtigt werden.


* Corresponding author: E-mail:

References

1 ZhangZ.; XueG.: Nuclear Techniques36 (2013) 608613Search in Google Scholar

2 FangJian, DuanYuangang, RanXiaobing, DaiChangnian: Nuclear Power Engineering35 (2014) 4245Search in Google Scholar

3 SigristJ. F.; BrocD.; LaineC.: Nucl. Eng. Des.23 (2006) 2431244310.1016/j.nucengdes.2006.03.001Search in Google Scholar

4 Min-TsungKaoa, Chung-YunWua, Ching-ChangChien, YibanXub, KunYuanb, MiloradDzodzob, MichaelConnerb, StevenBeltzb, SumitRayb, TeresaBissettb: Nucl. Eng. Des10 (2011) 4181419310.1016/j.nucengdes.2011.08.007Search in Google Scholar

5 Ehrnstén, U.; PakarinenJ.; KarlsenW.; KeinänenH.: Eng Fail Anal.33 (2013) 556510.1016/j.engfailanal.2013.04.021Search in Google Scholar

6 ChoiY.; LimS.; KoB.-H.; ParkK.-S.; ParkN.-C.; ParkaY.-P.; JeongK.-H.; ParkJ.-S.: Nucl. Eng. Des.255 (2013) 20221110.1016/j.nucengdes.2012.10.010Search in Google Scholar

7 FangJian, DuanYuangang, RanXiaobing, DaiChangnian: Nuclear Power Engineering35 (2014) 4245Search in Google Scholar

8 RCC-M Edition 2007: Design and Construction Rules for Mechanical Components of PWR Nuclear Islands [S]. 2007Search in Google Scholar

9 XiaX., XiongL.; SunK.; YuZ. P.: International Journal of Automotive Technology, 17 (2016) 991100210.1007/s12239-016-0097-7Search in Google Scholar

10 ASME-boiler and pressure vessel Code[S]. Section III, Division 1, Appendix III, 1989Search in Google Scholar

11 HuaL.; DengJ.; QianD.; LongH.: International Journal of Machine Tools & Manufacture110 (2016) 667910.1016/j.ijmachtools.2016.09.003Search in Google Scholar

12 YoungW. C.; BudynasR. G.: California Medicine68 (2002) 366374Search in Google Scholar

13 ZhouY.; CaiZ. B., PengJ. F.: Applied Surface Science388 (2016) 404810.1016/j.apsusc.2016.04.174Search in Google Scholar

14 XueG.; ZhangM.; XieL.: The Design of Reactor Internals Hold-Down Spring [C], 2016Search in Google Scholar

15 LiY.: Advanced Materials Research512–515 (2012) 19571960Search in Google Scholar

16 UryukovB. A.; EvdokimenkoY. I.; Kisel', V. M.; TkachenkoG. V.: Journal of Engineering Physics and Thermophysics77 (2004) 55956410.1023/B:JOEP.0000036502.40275.e0Search in Google Scholar

17 ASME Boiler and Pressure Vessel Code [S]. Section III, Division 1, Appendix II, 2004Search in Google Scholar

18 ASME Boiler and Pressure Vessel Code, Section II, Part D, 776–778 (2007)Search in Google Scholar

Received: 2017-03-14
Published Online: 2017-10-20
Published in Print: 2017-10-26

© 2017, Carl Hanser Verlag, München

Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110796/html
Scroll to top button