Startseite Technik Anti-neutrino flux in a research reactor for non-proliferation application
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Anti-neutrino flux in a research reactor for non-proliferation application

  • S. Khakshournia und Sh. Foroughi
Veröffentlicht/Copyright: 20. Oktober 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Owing to growing interest in the study of emitted antineutrinos from nuclear reactors to test the Atomic Energy Agency safeguards, antineutrino flux was studied in the Tehran Research Reactor (TRR) using ORIGEN code. According to our prediction, antineutrino rate was obtained 2.6 × 1017 (ν¯e/sec) in the core No. 57F of the TRR. Calculations indicated that evolution of antineutrino flux was very slow with time and the performed refueling had not an observable effect on antineutrino flux curve for a 5 MW reactor with the conventional refueling program. It is seen that for non-proliferation applications the measurement of the contribution of 239Pu to the fission using an antineutrino detector is not viable in the TRR.

Kurzfassung

Wegen des großen Interesses an der Untersuchung von frei werdenden Antineutrinos für Überwachungsmaßnahmen der Atomic Energy Agency wurde der Antineutrinofluss im Teheraner Forschungsreaktor (TRR) mit Hilfe des ORIGEN Rechencodes untersucht. Dabei wurde eine Antineutrinorate von 2.6 × 1017 (ν¯e/sec) im Kern des TRR berechnet. Die Berechnungen zeigen, dass die Entwicklung des Antineutrinoflusses sehr langsam vor sich ging und die durchgeführte Beladung keinen beobachtbaren Effekt auf den Antineutrinofluss hatte. Es zeigte sich, dass für Überwachungsmaßnahmen im Rahmen von Nichtverbreitungs-Anwendungen die Messung des Beitrags von 239Pu zur Spaltung mit Hilfe eines Antineutrinodetektors beim TRR nicht praktikabel ist.


* Corresponding author: E-mail:

References

1 DwyerD.: Antineutrinos from nuclear reactors: recent oscillation measurements. New Journal of Physics17 (2015) 02500310.1088/1367-2630/17/2/025003Suche in Google Scholar

2 WinslowL.: Simulation of Reactors for Antineutrino Experiments Using DRAGON, arXiv preprint arXiv:1109.6632, (2011)Suche in Google Scholar

3 EricksonA.; BernsteinA.; BowdenN.: Antineutrinos for reactor safeguards: effect of fuel loading and burnup on the signal. In: International Journal of Modern Physics: Conference Series, World Scientific, (2014), 146015910.1142/S2010194514601598Suche in Google Scholar

4 CribierM.: Reactor monitoring with Neutrinos., Nuclear Physics B-Proceedings Supplements221 (2011) 5710.1016/j.nuclphysbps.2011.03.094Suche in Google Scholar

5 BowdenN.; BernsteinA.; DazeleyS.; KeeferG.; ReynaD.; Cabrera-PalmerB.; KiffS.; LundJ.: Progress Towards Deployable Antineutrino Detectors for Reactor Safeguard. In: Proceedings of the 51th INMM Annual Meeting, (2010)Suche in Google Scholar

6 CribierM.: Neutrinos and Non-proliferation in Europe. In: Neutrino Geophysics: Proceedings of Neutrino Sciences 2005, Springer, (2006), 33134110.1007/978-0-387-70771-6_23Suche in Google Scholar

7 ChristensenE.; HuberP.; JaffkeP.; SheaT.: Antineutrino monitoring for the Iranian heavy water reactor. arXiv preprint arXiv:1403.7065, (2014)Suche in Google Scholar

8 JonesC.; BernsteinA.; ConradJ.; DjurcicZ.; FallotM.: Giot, L.; Keefer, G.; Onillon, A.; Winslow, L.: Reactor simulation for antineutrino experiments using DRAGON and MURE. Physical Review D86 (2012) 01200110.1103/PhysRevD.86.012001Suche in Google Scholar

9 ShibaT.: Reactor Simulations for Safeguards with the MCNP Utility for Reactor Evolution Code?Suche in Google Scholar

10 AEOI: Safety Analysis Report for Tehran Research Reactor. Reactors & Accelerators Research and Development School, Nuclear Science and Technology Institute (2009)Suche in Google Scholar

11 ShibaT.; FallotM.; CormonS.; GiotL.; OnillonA.; BuiV.; LeniauB.; CommuneauV.; LenoirM.; PleurelN.: Reactor Simulations for Safeguards with the MCNP Utility for Reactor Evolution Code. In: Symposium on International Safeguards, IAEA, (2014)Suche in Google Scholar

12 DwyerD.; LangfordT.: Spectral structure of electron antineutrinos from nuclear reactors. Physical review letters114 (2015) 012502 PMid:25615462;10.1103/PhysRevLett.114.012502Suche in Google Scholar

13 CaoJ.: Determining Reactor Neutrino Flux, Nuclear Physics B Proceedings Supplement, 00 (2012) 110.1016/j.nuclphysbps.2012.09.033Suche in Google Scholar

14 MaX.; ZhongW.; WangL.; ChenY.; CaoJ.: Improved calculation of the energy release in neutron-induced fission, Physical Review C, 88 (2013), pp. 01460510.1103/PhysRevC.88.014605Suche in Google Scholar

15 MaX.; LuF.; WangL.; ChenY.; ZhongW.; AnF.: Uncertainties analysis of fission fraction for reactor antineutrino experiments. arXiv preprint arXiv:1405.6807, (2014)Suche in Google Scholar

16 GauldI. C.; BowmanS. M.; MurphyB. D.; SchwalbachP.: Applications of ORIGEN to spent fuel safeguards and non-proliferation. In: Proceedings of the 47th Annual Meeting for the Institute of Nuclear Material Management, Nashville, Tennessee, (2006), 1620Suche in Google Scholar

17 CroffA. G.: A User's Manual for the ORIGEN2 Computer Code, (1980) 10.2172/5285077Suche in Google Scholar

18 HaagN.; GütleinA.; HofmannM.; OberauerL.; PotzelW.; SchreckenbachK.: Experimental Determination of the Antineutrino Spectrum of the Fission Products of 238U, paarXiv:1312.5601v1, (2013)Suche in Google Scholar

19 HahnA.; SchreckenbachK.; GelletlyW.; von FeilitzschF.; ColvinG.; KruscheB.: Antineutrino spectra from 241 Pu and 239 Pu thermal neutron fission products. Physics Letters B218 (1989) 36536810.1016/0370-2693(89)91598-0Suche in Google Scholar

20 SchreckenbachK.; ColvinG.; GelletlyW.; von FeilitzschF.: Determination of the antineutrino spectrum from 235 U thermal neutron fission products up to 9.5 MeV. Physics Letters B160 (1985) 32510.1016/0370-2693(85)91337-1Suche in Google Scholar

21 VogelP.; SchenterG. K.; MannF. M.; SchenterR.: Reactor antineutrino spectra and their application to antineutrino-induced reactions. II, Physical Review C24 (1981) 154310.1103/PhysRevC.24.1543Suche in Google Scholar

22 MuellerT. A.; LhuillierD.; FallotM.; LetourneauA.; CormonS.; FechnerM.; GiotL.; LasserreT.; MartinoJ.; MentionG.: Improved predictions of reactor antineutrino spectra. Physical Review C83 (2011) 05461510.1103/PhysRevC.83.054615Suche in Google Scholar

23 HayesA.; FriarJ.; GarveyG.; JungmanG.; JonkmansG.: Systematic uncertainties in the analysis of the reactor neutrino anomaly. Physical Review Letters112 (2014) 20250110.1103/PhysRevLett.112.202501Suche in Google Scholar

Received: 2017-03-31
Published Online: 2017-10-20
Published in Print: 2017-10-26

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110798/html
Button zum nach oben scrollen