Anti-neutrino flux in a research reactor for non-proliferation application
-
S. Khakshournia
und Sh. Foroughi
Abstract
Owing to growing interest in the study of emitted antineutrinos from nuclear reactors to test the Atomic Energy Agency safeguards, antineutrino flux was studied in the Tehran Research Reactor (TRR) using ORIGEN code. According to our prediction, antineutrino rate was obtained 2.6 × 1017 (
Kurzfassung
Wegen des großen Interesses an der Untersuchung von frei werdenden Antineutrinos für Überwachungsmaßnahmen der Atomic Energy Agency wurde der Antineutrinofluss im Teheraner Forschungsreaktor (TRR) mit Hilfe des ORIGEN Rechencodes untersucht. Dabei wurde eine Antineutrinorate von 2.6 × 1017 (
References
1 DwyerD.: Antineutrinos from nuclear reactors: recent oscillation measurements. New Journal of Physics17 (2015) 02500310.1088/1367-2630/17/2/025003Suche in Google Scholar
2 WinslowL.: Simulation of Reactors for Antineutrino Experiments Using DRAGON, arXiv preprint arXiv:1109.6632, (2011)Suche in Google Scholar
3 EricksonA.; BernsteinA.; BowdenN.: Antineutrinos for reactor safeguards: effect of fuel loading and burnup on the signal. In: International Journal of Modern Physics: Conference Series, World Scientific, (2014), 146015910.1142/S2010194514601598Suche in Google Scholar
4 CribierM.: Reactor monitoring with Neutrinos., Nuclear Physics B-Proceedings Supplements221 (2011) 5710.1016/j.nuclphysbps.2011.03.094Suche in Google Scholar
5 BowdenN.; BernsteinA.; DazeleyS.; KeeferG.; ReynaD.; Cabrera-PalmerB.; KiffS.; LundJ.: Progress Towards Deployable Antineutrino Detectors for Reactor Safeguard. In: Proceedings of the 51th INMM Annual Meeting, (2010)Suche in Google Scholar
6 CribierM.: Neutrinos and Non-proliferation in Europe. In: Neutrino Geophysics: Proceedings of Neutrino Sciences 2005, Springer, (2006), 331–34110.1007/978-0-387-70771-6_23Suche in Google Scholar
7 ChristensenE.; HuberP.; JaffkeP.; SheaT.: Antineutrino monitoring for the Iranian heavy water reactor. arXiv preprint arXiv:1403.7065, (2014)Suche in Google Scholar
8 JonesC.; BernsteinA.; ConradJ.; DjurcicZ.; FallotM.: Giot, L.; Keefer, G.; Onillon, A.; Winslow, L.: Reactor simulation for antineutrino experiments using DRAGON and MURE. Physical Review D86 (2012) 01200110.1103/PhysRevD.86.012001Suche in Google Scholar
9 ShibaT.: Reactor Simulations for Safeguards with the MCNP Utility for Reactor Evolution Code?Suche in Google Scholar
10 AEOI: Safety Analysis Report for Tehran Research Reactor. Reactors & Accelerators Research and Development School, Nuclear Science and Technology Institute (2009)Suche in Google Scholar
11 ShibaT.; FallotM.; CormonS.; GiotL.; OnillonA.; BuiV.; LeniauB.; CommuneauV.; LenoirM.; PleurelN.: Reactor Simulations for Safeguards with the MCNP Utility for Reactor Evolution Code. In: Symposium on International Safeguards, IAEA, (2014)Suche in Google Scholar
12 DwyerD.; LangfordT.: Spectral structure of electron antineutrinos from nuclear reactors. Physical review letters114 (2015) 012502 PMid:25615462;10.1103/PhysRevLett.114.012502Suche in Google Scholar
13 CaoJ.: Determining Reactor Neutrino Flux, Nuclear Physics B Proceedings Supplement, 00 (2012) 110.1016/j.nuclphysbps.2012.09.033Suche in Google Scholar
14 MaX.; ZhongW.; WangL.; ChenY.; CaoJ.: Improved calculation of the energy release in neutron-induced fission, Physical Review C, 88 (2013), pp. 01460510.1103/PhysRevC.88.014605Suche in Google Scholar
15 MaX.; LuF.; WangL.; ChenY.; ZhongW.; AnF.: Uncertainties analysis of fission fraction for reactor antineutrino experiments. arXiv preprint arXiv:1405.6807, (2014)Suche in Google Scholar
16 GauldI. C.; BowmanS. M.; MurphyB. D.; SchwalbachP.: Applications of ORIGEN to spent fuel safeguards and non-proliferation. In: Proceedings of the 47th Annual Meeting for the Institute of Nuclear Material Management, Nashville, Tennessee, (2006), 16–20Suche in Google Scholar
17 CroffA. G.: A User's Manual for the ORIGEN2 Computer Code, (1980) 10.2172/5285077Suche in Google Scholar
18 HaagN.; GütleinA.; HofmannM.; OberauerL.; PotzelW.; SchreckenbachK.: Experimental Determination of the Antineutrino Spectrum of the Fission Products of 238U, paarXiv:1312.5601v1, (2013)Suche in Google Scholar
19 HahnA.; SchreckenbachK.; GelletlyW.; von FeilitzschF.; ColvinG.; KruscheB.: Antineutrino spectra from 241 Pu and 239 Pu thermal neutron fission products. Physics Letters B218 (1989) 365–36810.1016/0370-2693(89)91598-0Suche in Google Scholar
20 SchreckenbachK.; ColvinG.; GelletlyW.; von FeilitzschF.: Determination of the antineutrino spectrum from 235 U thermal neutron fission products up to 9.5 MeV. Physics Letters B160 (1985) 32510.1016/0370-2693(85)91337-1Suche in Google Scholar
21 VogelP.; SchenterG. K.; MannF. M.; SchenterR.: Reactor antineutrino spectra and their application to antineutrino-induced reactions. II, Physical Review C24 (1981) 154310.1103/PhysRevC.24.1543Suche in Google Scholar
22 MuellerT. A.; LhuillierD.; FallotM.; LetourneauA.; CormonS.; FechnerM.; GiotL.; LasserreT.; MartinoJ.; MentionG.: Improved predictions of reactor antineutrino spectra. Physical Review C83 (2011) 05461510.1103/PhysRevC.83.054615Suche in Google Scholar
23 HayesA.; FriarJ.; GarveyG.; JungmanG.; JonkmansG.: Systematic uncertainties in the analysis of the reactor neutrino anomaly. Physical Review Letters112 (2014) 20250110.1103/PhysRevLett.112.202501Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Modelling Human Resource Requirements for the Nuclear Industry in Europe
- Some uncertainty results obtained by the statistical version of the KARATE code system related to core design and safety analysis
- The integrity of NSSS and containment during extended station blackout for Kuosheng BWR plant
- Experimental investigation of effect of spacer on two phase turbulent mixing rate in subchannels of pressure tube type BWR
- Thermal-hydraulic analysis of research reactor core with different LEU fuel types using RELAP5
- The application of knowledge management and TRIZ for solving the safe shutdown capability of fire alarms in nuclear power plants
- Dose assessment for emergency workers in early phase of Fukushima Daiichi nuclear power plant accident
- Anti-neutrino flux in a research reactor for non-proliferation application
- Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals
- Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach
- Internal and external hazards inside the containment in case of an emergency situation
- Slab albedo for linearly and quadratically anisotropic scattering kernel with modified FN method
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Modelling Human Resource Requirements for the Nuclear Industry in Europe
- Some uncertainty results obtained by the statistical version of the KARATE code system related to core design and safety analysis
- The integrity of NSSS and containment during extended station blackout for Kuosheng BWR plant
- Experimental investigation of effect of spacer on two phase turbulent mixing rate in subchannels of pressure tube type BWR
- Thermal-hydraulic analysis of research reactor core with different LEU fuel types using RELAP5
- The application of knowledge management and TRIZ for solving the safe shutdown capability of fire alarms in nuclear power plants
- Dose assessment for emergency workers in early phase of Fukushima Daiichi nuclear power plant accident
- Anti-neutrino flux in a research reactor for non-proliferation application
- Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals
- Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach
- Internal and external hazards inside the containment in case of an emergency situation
- Slab albedo for linearly and quadratically anisotropic scattering kernel with modified FN method