Modelling Human Resource Requirements for the Nuclear Industry in Europe
-
F. Roelofs
, M. Flore and U. von Estorff
Abstract
The European Human Resource Observatory for Nuclear (EHRO-N) provides the European Commission with essential data related to supply and demand for nuclear experts in the EU-28 and the enlargement and integration countries based on bottom-up information from the nuclear industry. The objective is to assess how the supply of experts for the nuclear industry responds to the needs for the same experts for present and future nuclear projects in the region. Complementary to the bottom-up approach taken by the EHRO-N team at JRC, a top-down modelling approach has been taken in a collaboration with NRG in the Netherlands. This top-down modelling approach focuses on the human resource requirements for operation, construction, decommissioning, and efforts for long term operation of nuclear power plants. This paper describes the top-down methodology, the model input, the main assumptions, and the results of the analyses.
Kurzfassung
Das European Human Resource Observatory for Nuclear (EHRO-N) versorgt die Europäischen Kommission mit grundlegenden Daten über Angebot und Nachfrage nach Kerntechnik-Experten in den 28 Ländern der EU und in den Erweiterungs- und Integrationsländern auf der Grundlage von Bottom-up-Informationen aus der kerntechnischen Industrie. So soll eine Beurteilung ermöglicht werden, wie die Versorgung mit Experten mit dem Bedarf an diesen Experten in aktuellen und zukünftigen kerntechnischen Projekten in der jeweiligen Region in Einklang zu bringen ist. Ergänzend zum EHRO-N-Ansatz wurde in Zusammenarbeit mit NRG in den Niederlanden ein Top-down-Modellierungsansatz aufgegriffen. Dieser Top-down-Modellierungsansatz konzentriert sich auf den Personalbedarf für den Betrieb, den Bau, die Stilllegung und die Bemühungen um den langfristigen Betrieb von Kernkraftwerken. Dieser Beitrag beschreibt die Top-down-Methodik, die Modell-Eingabe, die wichtigsten Annahmen und die Ergebnisse der Analysen.
References
1 Van Den DurpelL.; YacoutA.; WadeD. C.; TaiwoT.: DANESS v4.0: an integrated nuclear energy system assessment code. PHYSOR 2008, Interlaken, Switzerland (2008)Search in Google Scholar
2 IseeSystems: iThink software, (2009) www.iseesystems.comSearch in Google Scholar
3 International Atomic Energy Agency: International Project on Innovative Nuclear Reactors and Fuel Cycles (IAEA-INPRO). 2008www.iaea.org/inproSearch in Google Scholar
4 European Commission 6th Framework Programme Project Plutonium and Minor Actinides Management in Thermal High Temperature Reactors (PUMA). 2008, www.puma-project.euSearch in Google Scholar
5 Guérin, L.; FengB.; HejzlarP.; ForgetB.; KazimiM.; Van Den DurpelL.; DixonB.; MatthernG.; BoucherL.; DelpechM.; GirieudR.; MeyerM.: A Benchmark Study of Computer Codes for System Analysis of the Nuclear Fuel Cycle. MIT-NFC-TR-105, 2009, Boston, USASearch in Google Scholar
6 European Commission: Energy Roadmap 2050. COM(2011) 885/2, Brussels, Belgium, 2011Search in Google Scholar
7 CIA: The World Factbook: Country Comparison – Electricity Consumption. https://www.cia.gov/library/publications/the-world-factbook/rankorder/2042rank.html, accessed February 2013Search in Google Scholar
8 WNA: WNA Website. www.world-nuclear.org, accessed February 2014Search in Google Scholar
9 JohnsonR.C.: Manpower Requirements in the Nuclear Power Industry 1982–1991. ORAU-205, Oak Ridge University, USA198210.2172/6758630Search in Google Scholar
10 NIA: The UK Capability to Deliver a New Nuclear Build Programme. NIA New Build Working Group, UK, 2006Search in Google Scholar
11 IAEA: Managing the First Nuclear Power Plant Project. IAEA Tecdoc 1555, Vienna, Austria, 2007Search in Google Scholar
12 TuohyJ.: Workforce Issues; Symptoms/Underlying Problem. ICAPP09, Tokyo, Japan, 2009Search in Google Scholar
13 MazourT.; ScottS.; KernK.; KeselmanD.; DaleC.: Modeling Human Resource Development for New Nuclear Power Programs. International Conference on Human Resource Development for Introducing and Expanding Nuclear Power Programs. Abu Dhabi, UAE, 2010Search in Google Scholar
14 Goodnight: 2009 U.S. Nuclear Plant Staffing. Nuclear Newsletter – October 2009, Goodnight Consulting Inc, Vienna, USASearch in Google Scholar
15 KenleyC.R.; et al.: U.S. Job Creation Due to Nuclear Power Resurgence in the United States; Volumes 1 and 2. INEEL/EXT-04-02384, Idaho, USA, 2004Search in Google Scholar
16 RoelofsF.; HartJ.; van HeekA.: European New Build and Fuel Cycles in the 21st Century. Nuclear Engineering and Design241 (2011) 2307–231710.1016/j.nucengdes.2011.04.002Search in Google Scholar
17 SimonovskaV.; Von EstorffU.: Putting into Perspective the Supply of and Demand for Nuclear Experts by 2020 within the EU-27 Nuclear Energy Sector. Report EUR 25291 EN, Petten, Netherlands, 2012Search in Google Scholar
18 EPRI: Program on Technology Innovation: Staff Optimization Scoping Study for New Nuclear Power Plants. EPRI 1011717, Palo Alto, USA, 2005Search in Google Scholar
19 IAEA: Staffing requirements for future small and medium reactors (SMRs) based on operating experience and projections. IAEA Tecdoc 1193, Vienna, Austria, 2001Search in Google Scholar
20 MazourT.: Milestones in Development of a National Infrastructure: Human Resource Development. Technical Meeting/Workshop on Milestones for Nuclear Power Infrastructure Development (TM-33552), Vienna, Austria, 2007Search in Google Scholar
21 OrlikowG.; BinvelY.; MansonI.; PrengR.: Leading Talent Management in the Nuclear Industry. Korn/Ferry Institue, 2008, www.kornferry.comSearch in Google Scholar
22 DOE: DOE NP2010 Nuclear Power Plant Construction Infrastructure Assessment. Department of Energy, Washington D.C., USA, 2005Search in Google Scholar
23 D'HaeseleerW.: Synthesis on the Economics of Nuclear Energy. 2013, http://ec.europa.eu/energy/nuclear/forum/doc/final_report_dhaeseleer/synthesis_economics_nuclear_20131127-0.pdfSearch in Google Scholar
24 OECD: The Economics of Long-term Operation of Nuclear Power Plants. OECD/NEA No. 7054, ISBN 978-92-64-99205-4, 2012Search in Google Scholar
25 Foratom: FORATOM Position on Nuclear Long-Term Operation (LTO). http://www.foratom.org/position-papers/8631-long-term-operation/file.html, 2014Search in Google Scholar
26 EC: Socio-Economic Role of Nuclear Energy to Growth and Jobs in the EU for Time Horizon 2020–2050, 2012 http://ec.europa.eu/energy/nuclear/forum/opportunities/doc/opportunities/2012_04_04/socioeconomic_role_nuclear_2020_2050_final.pdfSearch in Google Scholar
27 ENEF: Socio-economic Benefits of the Nuclear Industry in the EU to 2050. http://ec.europa.eu/energy/nuclear/forum/meetings/doc/2013_05_30/related_docs/socio-economic_benefits_of_the_nuclear_industry_in_the_eu_to_2050.pdf, 2013Search in Google Scholar
28 PWC: Le Poids Socio-économique de l'électronucléaire en France. www.pwc.com, 2011Search in Google Scholar
29 KrajncB.: Investments In Continuous Safety Improvements. ENC 2014, Marseille, France, 2014Search in Google Scholar
30 IAEA: Cost drivers for the assessment of nuclear power plant life extension. IAEA Tecdoc 1309, Vienna, Austria, 2002Search in Google Scholar
31 IAEA: Organization and Management for Decommissioning of Large Nuclear Facilities. IAEA Technical Report Series No. 399, Vienna, Austria, 2000Search in Google Scholar
32 Dominion: Study of Construction Technologies and Schedules, O&M Staffing and Cost, Decommissioning Costs and Funding Requirements for Advanced Reactor Designs. US DOE, USA, 2004Search in Google Scholar
33 GoodnightC. T.: Life Cycle Planning for Nuclear Program Staffing. Second African Conference on Energy & Nuclear Power in Africa, Cape Town, South Africa, 2011Search in Google Scholar
34 DeffrennesM.; GressP.: Socio-Economic Role of Nuclear Energy to Growth and Jobs in the EU for time Horizon 2020–2050. RM 2050 – Nuclear Energy 2050 – Growth and Jobs, 2012Search in Google Scholar
35 ClémentG.: HR Needs in Nuclear Decommissioning. Education and Training in Nuclear Decommissioning, Birmingham, UK, 2015Search in Google Scholar
36 OECD/NEA: Costs of Decommissioning Nuclear Power Plants. OECD/NEA No. 7201, Boulogne-Billancourt, France, 2016Search in Google Scholar
37 Cogent: Renaissance Nuclear Skills Series: 1. Power People. The Civil Nuclear Workforce 2009–2025. Cogent, Warrington, UK, 2009Search in Google Scholar
38 EHRO-NSAG: Expert discussion at EHRO-N Senior Advisory Group meeting. Warsaw, Poland, 2016Search in Google Scholar
39 SimonovskaV.: Modelling Study – EHRO-N data contribution (Excel file). JRC-IET, Petten, Netherlands, 2012Search in Google Scholar
40 BrancucciR.; FloreM.; Von EstorffU.: Post-Fukushima Analysis of HR Supply and Demand. JRC92404, EUR 27017 EN, Petten, Netherlands, available on ehron.jrc.ec.europa.eu, 2014Search in Google Scholar
41 RoelofsF.; Von EstorffU.: Top Down Workforce Demand from Energy Scenarios: Influence of Long Term Operation. JRC92340, EUR 26962 EN, Petten, Netherlands, 2014, available on ehron.jrc.ec.europa.euSearch in Google Scholar
42 HillrichsC.: Existing Plants and New Builds: A Resources Dilemma?WNA, London, UK, 2009 PMid:19852958Search in Google Scholar
43 RoelofsF.; Von EstorffU.: Top-down workforce demand extrapolation from nuclear energy scenarios. JRC81666, EUR 26008 EN, Petten, Netherlands, 2013, available on ehron.jrc.ec.europa.euSearch in Google Scholar
44 RoelofsF.; FloreM.; Top-Down Workforce Demand from Energy Scenarios: Alternative Demand Scenarios. EHRO-N Report, JRC105036, Petten, Netherlands, 2016Search in Google Scholar
45 RoelofsF.; FloreM.; BarboniM.: Top Down Workforce Demand from Energy Scenarios: Sensitivity Analysis. JRC, Petten, Netherlands, 2016, available on ehron.jrc.ec.europa.eu.Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Modelling Human Resource Requirements for the Nuclear Industry in Europe
- Some uncertainty results obtained by the statistical version of the KARATE code system related to core design and safety analysis
- The integrity of NSSS and containment during extended station blackout for Kuosheng BWR plant
- Experimental investigation of effect of spacer on two phase turbulent mixing rate in subchannels of pressure tube type BWR
- Thermal-hydraulic analysis of research reactor core with different LEU fuel types using RELAP5
- The application of knowledge management and TRIZ for solving the safe shutdown capability of fire alarms in nuclear power plants
- Dose assessment for emergency workers in early phase of Fukushima Daiichi nuclear power plant accident
- Anti-neutrino flux in a research reactor for non-proliferation application
- Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals
- Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach
- Internal and external hazards inside the containment in case of an emergency situation
- Slab albedo for linearly and quadratically anisotropic scattering kernel with modified FN method
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Modelling Human Resource Requirements for the Nuclear Industry in Europe
- Some uncertainty results obtained by the statistical version of the KARATE code system related to core design and safety analysis
- The integrity of NSSS and containment during extended station blackout for Kuosheng BWR plant
- Experimental investigation of effect of spacer on two phase turbulent mixing rate in subchannels of pressure tube type BWR
- Thermal-hydraulic analysis of research reactor core with different LEU fuel types using RELAP5
- The application of knowledge management and TRIZ for solving the safe shutdown capability of fire alarms in nuclear power plants
- Dose assessment for emergency workers in early phase of Fukushima Daiichi nuclear power plant accident
- Anti-neutrino flux in a research reactor for non-proliferation application
- Friction coefficient and limiter load test analysis by flexibility coefficient model of Hold-Down Spring of nuclear reactor vessel internals
- Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach
- Internal and external hazards inside the containment in case of an emergency situation
- Slab albedo for linearly and quadratically anisotropic scattering kernel with modified FN method