Home The application of knowledge management and TRIZ for solving the safe shutdown capability of fire alarms in nuclear power plants
Article
Licensed
Unlicensed Requires Authentication

The application of knowledge management and TRIZ for solving the safe shutdown capability of fire alarms in nuclear power plants

  • C.-N. Wang , H.-P. Chen , M.-H. Hsueh and F.-L. Chin
Published/Copyright: October 20, 2017
Become an author with De Gruyter Brill

Abstract

The Fukushima nuclear disaster in 2011 has raised widespread concern over the safety of nuclear power plants. This study employed knowledge management in conjunction with the Teoriya Resheniya Izobreatatelskih Zadatch (TRIZ) method in the formulation of a database to facilitate the evaluation of post-fire safe shutdown capability with the aim of safeguarding nuclear facilities in the event of fire. The proposed approach is meant to bring facilities in line with US Nuclear Regulatory Commission (NRC) standards. When implemented in a case study of an Asian nuclear power plant, our method proved highly effective in the detection of 22 cables that fell short of regulatory requirements, thereby reducing 850,000 paths to 0. This study could serve as reference for industry and academia in the development of systematic approaches to the upgrading of nuclear power plants.

Kurzfassung

Die Nuklearkatastrophe von Fukushima 2011 führte zu weitverbreiteten Bedenken in Bezug auf die Sicherheit von Kernkraftwerken. In dieser Studie wurde Wissensmanagement in Verbindung mit der Teoriya Resheniya Izobreatatelskih Zadatch (TRIZ) Methode bei der Formulierung eines Datenbestands zur Erleichterung der Bewertung des sicheren Abschaltens nach einem Brand angewendet mit dem Ziel der Sicherung von Kernkraftwerken im Brandfall. Der vorgeschlagene Ansatz soll kerntechnische Anlagen auf einen Stand mit den Standards der US Nuclear Regulatory Commission (NRC) bringen. Wendet man diese Methode im Rahmen einer Fallstudie bei einem asiatischen Kernkraftwerk an, zeigt sich die Methode sehr effektiv beim Nachweis von 22 Leitungen die den gesetzlichen Anforderungen nicht genügen. Diese Studie könnte als Referenzmethode für Industrie und Academia dienen bei der Entwicklung eines systematischen Ansatzes zur Verbesserung der Sicherheit von Kernkraftwerken.


* Corresponding author: E-mail:

References

1 AltshullerG., ShulyakL., RodmanS.: The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity. Technical Innovation Ctr.: Worcester, MA, 1999.Search in Google Scholar

2 DebowskiS.: Knowledge Management. Wiley India Pvt. Ltd., 2007.Search in Google Scholar

3 Generic Letters GL 83-33, Position 2, 1983. Water Curtain, October, 1983.10.7901/2169-3358-1983-1-33Search in Google Scholar

4 Generic Letters GL 86-10, Position 3.6.2. Fire Stop, April, 1986. (1.) NRC BTP APCSB 9.5-1 App. A, (1976) “Fire Protection guide for Nuclear Power Plants, May, 1986.Search in Google Scholar

5 HuaZ., YangJ., CoulibalyS., ZhangB.: Integration TRIZ with problem-solving tools: a literature review from 1995 to 2006. International Journal of Business Innovation and Research1 (2006) 11112810.1504/IJBIR.2006.011091Search in Google Scholar

6 Information Notice 84-09. Lessons Learned from NRC Inspections of Fire Protection Safe Shutdown Systems (10 CFR 50, Appendix R), 1984.Search in Google Scholar

7 MannD.: Hands-on Systematic Innovation. IFR Press: Clevedon, UK, 2007.Search in Google Scholar

8 National Fire Protection Association 805, Performance-based Standard for Fire Protection for Light Water Reactor Electric Generating Plants, 2001 Edition.Search in Google Scholar

9 NEI 00-01, Rev.2. Guidance for Post Fire Safe Shut Down Circuit Analysis, 2009.Search in Google Scholar

10 NFPA805 National Fire Protection Association 805, Performance-based Standard for Fire Protection for Light Water Reactor Electric Generating Plants, 2001 Edition.Search in Google Scholar

11 NRC Branch Technical Position (BTP) 9.5-1. Guidelines For Fire Protection For Nuclear Power Plants, CMEB, July 1981.Search in Google Scholar

12 NRC BTP APCSB 9.5-1 App. A. Fire Protection guide for Nuclear Power Plants, 1976.Search in Google Scholar

13 NRC Standard Review Plan 9.5-1. Fire Protection Program, November, 1975.Search in Google Scholar

14 NRC, 1979. 10 CFR 50 Appendix R to Part 50 – Fire Protection Program For Nuclear Power Facilities Operating Prior To January 1.Search in Google Scholar

15 NRC, 1984. Information Notice 84-094 Guidance IX.Search in Google Scholar

16 NRC, 2007. RG 1.189, Rev. 2 Section 5.3, Fire Protection of Safe-Shutdown Capabilities.Search in Google Scholar

17 NRC, 2012. 10 CFR 50 Appendix A to Part 50, General Design Criterion 3.10.5860/CHOICE.50-0634Search in Google Scholar

18 NUREG-1852. Demonstrating the Feasibility and Reliability of Operator Manual Actions in Response to Fire, Final Report, October, 2007.Search in Google Scholar

19 NUREG-1924. Electric Raceway Fire Barrier Systems in U.S. Nuclear, 2010.Search in Google Scholar

20 RosnerD., GroteB., Hartman, K, Hofling, B, GuerickeO.: From natural language documents to sharable product knowledge: a knowledge engineering approach. In: BorghoffU.M., PareschiR. (Eds.), Information technology for knowledge management, pp. 3551, Springer Verlag, 199810.1007/978-3-662-03723-2_8Search in Google Scholar

21 Society of Fire Protection Engineers, 2003. SFPE Hand Book.Search in Google Scholar

22 TPC Maanshan Nuclear Power Plant, 1999. Final Safety Analyze Report.Search in Google Scholar

23 TRIZ: A New Approach to Innovative Engineering and Problem Solving 1996 AME Annual Conference in Milwaukee, WI, November 5–8.Search in Google Scholar

24 USNRC Generic Letter 77-02, 1977. Fire Protection Functional Responsibilities, Administrative Control and Quality Assurance.Search in Google Scholar

Received: 2017-03-02
Published Online: 2017-10-20
Published in Print: 2017-10-26

© 2017, Carl Hanser Verlag, München

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110794/html
Scroll to top button