Home Calculation of the fuel composition and the deterministic reloading pattern in the second cycle of the BUSHEHR VVER-1000 reactor using the weighting factor method
Article
Licensed
Unlicensed Requires Authentication

Calculation of the fuel composition and the deterministic reloading pattern in the second cycle of the BUSHEHR VVER-1000 reactor using the weighting factor method

  • Y. Rahmani , A. Pazirandeh , M. B. Ghofrani and M. Sadighi
Published/Copyright: December 8, 2016
Become an author with De Gruyter Brill

Abstract

To calculate the optimum reloading pattern in the second cycle of BUSHEHR VVER-1000 reactor, it was necessary to first calculate the burnup and fuel composition of each fuel assembly at the end of the first operational cycle so that the types of applicable fuel assemblies in the second cycle could be determined. Time-dependent calculations were performed using the WIMSD-5B and CITATION-LDI2 codes coupled with thermo-hydraulic computations during the first cycle. A weighting factor was defined for all 16 types of fuel assemblies in the second cycle based on their types and fuel compositions. In the process of calculating the deterministic reloading pattern, the number of probable arrangements was reduced from 7.55 × 1022 cases to just 1 856 cases by using a weighting-factor method and the structural constraints of the reactor core. The thermo-neutronic parameters of each of the 1 856 arrangements were then calculated by coupling the WIMSD-5B and CITATION-LDI2 codes with the thermo-hydraulic program. Afterwards, the processes of screening the probable arrangements and searching for the optimal reloading pattern were carried out based on the values of these parameters.

Kurzfassung

Zur Berechnung des optimalen Belademusters im zweiten Zyklus des BUSHEHR VVER-1000 Reaktors wurde zuerst der Abbrand und die Brennstoffzusammensetzung einer jeden Brennstoffanordnung am Ende des ersten Betriebszyklus berechnet, so dass die geeigneten Brennstoffanordnungen im zweiten Zyklus bestimmt werden konnten. Zeitabhängige Berechnungen wurden durchgeführt mit Hilfe der WIMSD-5B und CITATION-LDI2 Codes gekoppelt mit thermohydraulischen Berechnungen während des ersten Zyklus. Ein Wichtungsfaktor wurde im zweiten Zyklus für alle 16 Arten der Brennstoffanordnung bestimmt. Im Laufe der Berechnungen der deterministischen Belademuster wurde die Anzahl der möglichen Anordnungen reduziert von 7.55 × 1022 Fällen auf 1 856 Fälle mit Hilfe der Methode der Wichtungsfaktoren und unter Berücksichtigung der baulichen Einschränkungen des Reaktorkerns. Die thermoneutronischen Parameter jeder dieser 1 856 Anordnungen wurde dann berechnet durch Kopplung der WIMSD-5B und CITATION-LDI2 Codes mit dem thermohydraulischen Programm. Danach wurde auf der Grundlage dieser Parameter nach möglichen Anordnungen und dem optimalen Belademuster gesucht.


* Corresponding author: E-mail:

References

1 Mohseni, N.; Boroushaki, M.; Ghofrani, M. B.; Raji, M. H.: Application of minimum plutonium criteria at EOC to optimize the fuel loading pattern in VVER-1000 reactors. Ann. Nucl. Energy35 (2008) 26927610.1016/j.anucene.2007.06.011Search in Google Scholar

2 Babazadeh, D.; Boroushaki, M.; Lucas, C.: Optimization of fuel core loading pattern design in a VVER nuclear power reactors using Particle Swarm Optimization. Ann. Nucl. Energ36 (2009) 92393010.1016/j.anucene.2009.03.007Search in Google Scholar

3 Khoshahval, M.; Zolfaghari, A.; Minuchehr, H.; Sadighi, M.; Norouzi, A.: PWR fuel management optimization using continuous particle swarm intelligence. Ann. Nucl. Energy37 (2010) 263127110.1016/j.anucene.2010.05.023Search in Google Scholar

4 Fadaei, A. H.; Setayeshi, S.: LONSA as a tool for loading pattern optimization for VVER-1000 using synergy of a neural network and simulated annealing. Ann. Nucl. Energy35 (2008) 1968197310.1016/j.anucene.2008.05.001Search in Google Scholar

5 Fadaei, A. H.; Setayeshi, Kia, S.: An optimization method based on combination of cellular automata and simulated annealing for VVER-1000 NPP loading pattern. Nucl. Eng. Des.239 (2009) 2800280810.1016/j.nucengdes.2009.09.001Search in Google Scholar

6 Fadaei, A. H.; Setayeshi: A new optimization method based on cellular automata for VVER-1000 nuclear reactor loading pattern. Ann. Nucl. Energy36 (2009) 65966710.1016/j.anucene.2008.12.029Search in Google Scholar

7 Hosseini, M.; Vosoughi, N.: Development of a VVER-1000 core loading pattern optimization program based on perturbation theory. Ann. Nucl. Energy39 (2012) 354110.1016/j.anucene.2011.08.028Search in Google Scholar

8 Safarzadeh, O.; Zolfaghari, A.; Norouzi, A.; Minuchehr, H.: Loading pattern optimization of PWR reactors using Artificial Bee Colony. Ann.Nucl.Energ38 (2011) 2218222610.1016/j.anucene.2011.06.008Search in Google Scholar

9 Atomenergoproekt, “BUSHEHR VVER-1000 Reactor Final Safety Analysis Report (Chapter 4), 49.BU.10.0.OO.FSAR.RDR001, Ministry of Russian Federation of Atomic Energy (2003)Search in Google Scholar

10 Roth, M. J.; Macdougall, J. D.; Kemshell, P. B.: Winfrith Improved Multigroup Scheme Code System (WIMSD5-B manual). NEA-1507, Atomic Energy Establishment (1997)Search in Google Scholar

11 Fowler, T. B.; Vondy, D. R.; Cunningham, G. W.: CITATION-LDI2: Nuclear Reactor Core Analysis Code System, CCC-643ORNL, Oak Ridge National Laboratory (1999)Search in Google Scholar

12 Rahmani, Y.: Safety Analysis of VVER-1000 Type Reactors against Pump Failure Accident in 2 and 4 Loops. Proc. Int. Conf. Safety assurance of NPP with WWER, GIDROPRESS, Podolsk, Russia, May. 17–20, 2011Search in Google Scholar

13 Rahmani, Y.: Study of Thermohydraulic Parameters of the Bushehr's VVER-1000 Reactor during the Initial Startup and the First Cycle Using the Coupling of WIMSD5-B, CITATION-LDI2 and WERL Codes. Proc. Int. Conf. Safety assurance of NPP with WWER, GIDROPRESS, Podolsk, Russia, May. 17–20, 201310.1016/j.anucene.2012.11.018Search in Google Scholar

14 Todreas, N. E.; Kazimi, M. S.: Nuclear System 1, Taylor and Francis, Massachusetts, United States (1993)Search in Google Scholar

15 Rahmani, Y.; Rahgoshay, M.: Study of the Role of Gap Conductance Coefficient of Fuel on Increasing Safety in VVER-1000 Reactors. Proc. Int. Conf. Safety assurance of NPP with WWER, GIDROPRESS, Podolsk, Russia, May. 17–20, 2011Search in Google Scholar

16 Weisman, J.; Macdonald, P. E.; Miller, A. I.; Ferrari, H.: Fission Gas Release from UO2 Fuel Rods with Time Varying Power Histories. Trans. Am. Nucl. Soc,12 (1969) 900Search in Google Scholar

17 Sontag, R. E.; Borgnakke, C.: Fundamentals of Thermodynamics. 5rd ed., John Wiley and Sons, New York, United Stated (1997)Search in Google Scholar

18 Rahmani, Y.; Pazirandeh, A.; Ghofrani, M. B.; Sadighi, M.: Calculation of the fuel composition and the thermo-neutronic parameters of the Bushehr's VVER-1000 reactor during the initial startup and the first cycle using the WIMSD5-B, CITATION-LDI2 and WERL codes. Ann. Nucl. Energy57 (2013) 688310.1016/j.anucene.2012.11.018Search in Google Scholar

19 Rahmani, Y.; Pazirandeh, A.; Ghofrani, M. B.; Sadighi, M.: Using a Combination of Weighting Factors, Genetic Algorithm and Ant Colony Methods to Speed up the Reloading Pattern Optimization of VVER-1000 Reactors. Proc. Int. Conf. Safety assurance of NPP with WWER, GIDROPRESS, Podolsk, Russia, May. 17–20, 2013Search in Google Scholar

Received: 2016-01-24
Published Online: 2016-12-08
Published in Print: 2016-12-16

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Technical Contributions/Fachbeiträge
  6. Use of molybdenum as a structural material of fuel elements for improving nuclear reactors safety
  7. Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code
  8. Spatial distribution of nanoparticles in PWR nanofluid coolant subjected to local nucleate boiling
  9. Impact of mesh points number on the accuracy of deterministic calculations of control rods worth for Tehran research reactor
  10. Dependence of neutron rate production with accelerator beam profile and energy range in an ADS-TRIGA RC1 reactor
  11. Effects of the wallpaper fuel design on the neutronic behavior of the HTR-10
  12. Loss of flow Accident (LOFA) analyses using LabView-based NRR simulator
  13. Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies
  14. Simulation of polycarbonate-CNT nanocomposite dosimeter based on electrical characteristics
  15. Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation
  16. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures
  17. Polynomial approach method to solve the neutron point kinetics equations with use of the analytic continuation
  18. The slab albedo problem for the triplet scattering kernel with modified FN method
  19. Calculation of the fuel composition and the deterministic reloading pattern in the second cycle of the BUSHEHR VVER-1000 reactor using the weighting factor method
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110609/html
Scroll to top button