Home Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation
Article
Licensed
Unlicensed Requires Authentication

Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation

  • M. Shafaei , F. Ziaie and N. Hajiloo
Published/Copyright: December 8, 2016
Become an author with De Gruyter Brill

Abstract

The goal of this study is to compare the thermoluminescence properties of nano and micro structure hydroxyapatite. Nano structure hydroxyapatite was synthesized via hydrolysis method, while the micro structure one was from Merck Company. X-ray diffraction and fourier transform infrared spectroscopy were used to determine the crystal structure and chemical composition of the hydroxyapatite samples. Particles sizes of each sample were estimated using Scherer equation and transmission electron microscopy system. Thermoluminescence properties of the samples were investigated under gamma irradiation. The glow curves of micro and nano structure samples show a peak at 150 °C and 200 °C, respectively. Thermoluminescence responses of both the samples were linear in the range of 25 – 1 000 Gy where, nano structure sample show a greater slope and stronger linearity in comparison to the micro sample. The results show that the thermoluminescence response of micro sample faded rapidly in comparison to the nano sample due to the existence of the peak at higher temperature.

Kurzfassung

Ziel dieser Studie ist es, die Thermolumineszenzeigenschaften von Mikro- und Nano-Hydroxylapatit-Strukturen zu vergleichen. Dazu wurde die Nanostruktur von Hydroxylapatit hydrolysiert, die Mikro-Hydroxylapatit-Struktur stammt von der Firma Merck. Die Bestimmung der Kristallstrukturen und der chemischen Zusammensetzung der Hydroxylapatit-Proben erfolgte mit Hilfe von Röntgendiffraktion und Fourier-Transformations-Infrarot-Spektroskopie. Die Partikelgrößen der Proben wurden bestimmt mit Hilfe der Scherer-Gleichung und der Transmissionselektronenmikroskopie. Die Thermolumineszenzeigenschaften der Proben wurden nach Gammabestrahlung untersucht. Die Glow-Kurve der Mikro- und Nano-Hydroxylapatit-Proben zeigen einen Peak bei 150 °C bzw. 200 °C. Das Thermolumineszenzverhalten beider Proben war linear im Bereich 25 – 1 000 Gy, wobei Nanostrukturproben ein größeres Gefälle zeigen und stärkere Linearität als die Mikrostrukturproben. Die Ergebnisse zeigen, dass das Thermolumineszenzverhalten der Mikrostrukturprobe ein höheres Fading hat im Vergleich zur Nanostrukturprobe.


* Corresponding author: E-mail:

References

1 Arshak, K.; Korostynska, O.: Advanced materials and techniques for radiation dosimetry. Artech HouseBoston, 2006Search in Google Scholar

2 Alvarez, R.; Rivera, T.; Guzman, J.; Piña-Barba, M.; Azorin, J.: Thermoluminescent characteristics of synthetic hydroxyapatite (SHAp). Applied Radiation and Isotopes83 (2014) 19219510.1016/j.apradiso.2013.04.011Search in Google Scholar PubMed

3 Chapman, M.; Miller, A.; Stoebe, T.: Thermoluminescence in hydroxyapatite. Medical Physics6 (1979) 49449910.1118/1.594611Search in Google Scholar PubMed

4 Fukuda, Y.; Ohtaki, H.; Tomita, A.; Takeuchi, N.: Thermoluminescence of hydroxyapatite doped with copper. Radiation Protection Dosimetry47 (1993) 20520710.1093/oxfordjournals.rpd.a081733Search in Google Scholar

5 Lapraz, D.; Baumer, A.; Iacconi, P.: On the Thermoluminescent Properties of Hydroxyapatite Ca5 (PO4) 3OH. physica status solidi (a)54 (1979) 60561310.1002/pssa.2210540223Search in Google Scholar

6 Oliveira, L.; Rossi, A.; Baffa, O.: A comparative thermoluminescence and electron spin resonance study of synthetic carbonated A-type hydroxyapatite. Applied Radiation and Isotopes70 (2012) 53353710.1016/j.apradiso.2011.11.009Search in Google Scholar PubMed

7 Shafaei, M.; Ziaie, F.; Sardari, D.; Larijani, M.: Study on carbonated hydroxyapatite as a thermoluminescence dosimeter, Kerntechnik80 (2015) 666910.3139/124.110484Search in Google Scholar

8 Shafaei, M.; Ziaie, F.; Sardari, D.; Larijani, M.: Thermoluminescence properties of gamma-irradiated nano-structure hydroxyapatite. Luminescence31 (2016) 22322810.1002/bio.2949Search in Google Scholar PubMed

9 Zarate-Medina, J.; Sandoval-Cedeño, K.; Barrera-Villatoro, A.; Lemus-Ruiz, J.; Rivera_Montalvo, T.: Thermal effect on thermoluminescence response of hydroxyapatite. Applied Radiation and Isotopes100 (2015) 505410.1016/j.apradiso.2014.12.004Search in Google Scholar PubMed

10 Ziaie, F.; Moein, N. F.; Shafaei, M.: Thermoluminescent characteristics of nano-structure hydroxyapatite: Dy. Kerntechnik79 (2014) 50050310.3139/124.110445Search in Google Scholar

11 Ziaie, F.; Hajiloo, N.; Alipour, A.; Amraei, R.; Mehtieva, S.: Retrospective dosimetry using synthesized nano-structure hydroxyapatite. Radiation protection dosimetry145 (2011) 37738410.1093/rpd/ncq443Search in Google Scholar PubMed

12 Palacios, L.; Rivera, T.; Roman, J.; Azorín, J.; Gaona, E.: Thermoluminescence of zirconium oxide nanostructured to mammography X-ray beams. Applied Radiation and Isotopes70 (2012) 1400140210.1016/j.apradiso.2012.02.005Search in Google Scholar PubMed

13 Zahedifar, M.; Sadeghi, E.: Thermoluminescence dosimetry properties of new Cu doped CaF2 nanoparticles. Radiation protection dosimetry (2013) nct151 10.1093/rpd/nct151Search in Google Scholar PubMed

14 Leong, C. Y.; Wagiran, H.; Ismail, A.; Ali, H.: Thermoluminescence characteristics of aluminium oxide doped with carbon and titanium co-doped subjected to 6 and 10 MV photon irradiations. Journal of Radioanalytical and Nuclear Chemistry (2015) 18Search in Google Scholar

15 Yazici, A. N.; Öztaş, M.; Bedir, M.: The thermoluminescence properties of copper doped ZnS nanophosphor. Optical Materials29 (2007) 1091109610.1016/j.optmat.2006.04.010Search in Google Scholar

Received: 2016-09-25
Published Online: 2016-12-08
Published in Print: 2016-12-16

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Technical Contributions/Fachbeiträge
  6. Use of molybdenum as a structural material of fuel elements for improving nuclear reactors safety
  7. Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code
  8. Spatial distribution of nanoparticles in PWR nanofluid coolant subjected to local nucleate boiling
  9. Impact of mesh points number on the accuracy of deterministic calculations of control rods worth for Tehran research reactor
  10. Dependence of neutron rate production with accelerator beam profile and energy range in an ADS-TRIGA RC1 reactor
  11. Effects of the wallpaper fuel design on the neutronic behavior of the HTR-10
  12. Loss of flow Accident (LOFA) analyses using LabView-based NRR simulator
  13. Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies
  14. Simulation of polycarbonate-CNT nanocomposite dosimeter based on electrical characteristics
  15. Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation
  16. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures
  17. Polynomial approach method to solve the neutron point kinetics equations with use of the analytic continuation
  18. The slab albedo problem for the triplet scattering kernel with modified FN method
  19. Calculation of the fuel composition and the deterministic reloading pattern in the second cycle of the BUSHEHR VVER-1000 reactor using the weighting factor method
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110579/html
Scroll to top button