Home Technology Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures
Article
Licensed
Unlicensed Requires Authentication

Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures

  • A. Karanam , P. K. Sharma , S. Ganju and R. K. Singh
Published/Copyright: December 8, 2016
Become an author with De Gruyter Brill

Abstract

During postulated accident sequences in nuclear reactors, hydrogen may get released from the core and form a flammable mixture in the surrounding containment structure. Ignition of such mixtures and the subsequent pressure rise are an imminent threat for safe and sustainable operation of nuclear reactors. Methods for evaluating post ignition characteristics are important for determining the design safety margins in such scenarios. This study presents two thermo-chemical models for determining the post ignition state. The first model is based on internal energy balance while the second model uses the concept of element potentials to minimize the free energy of the system with internal energy imposed as a constraint. Predictions from both the models have been compared against published data over a wide range of mixture compositions. Important differences in the regions close to flammability limits and for stoichiometric mixtures have been identified and explained. The equilibrium model has been validated for varied temperatures and pressures representative of initial conditions that may be present in the containment during accidents. Special emphasis has been given to the understanding of the role of dissociation and its effect on equilibrium pressure, temperature and species concentrations.

Kurzfassung

Während postulierter Störfallabfolgen in Kernreaktoren könnte Wasserstoff aus dem Kern freigesetzt werden und ein brennbares Gemisch im umgebenden Containment bilden. Die Entzündung solcher Gemische und die nachfolgende Druckerhöhung stellen eine unmittelbare Gefahr für den sicheren Betrieb des Reaktors dar. Methoden zur Bewertung der Nachentflammungseigenschaften sind wichtig zur Bestimmung der Sicherheitsbereiche bei der Systemauslegung für solche Szenarien. Dieser Beitrag stellt zwei thermo-chemische Modelle zur Bestimmung des Nachentflammungszustands vor. Das erste Modell basiert auf der internen Energiebilanz während das zweite Modell das Konzept von Elementpotentialen verwendet um die freie Energie des Systems zu minimieren. Die Vorhersagen beider Modelle wurden verglichen mit publizierten Daten über einen weiten Bereich von Gemisch-Zusammensetzungen. Wichtige Unterschiede in den Gebieten nahe der Zündgrenze und für stöchiometrische Gemische wurden festgestellt und erklärt. Das Gleichgewichtsmodell wurde validiert für verschiedene Temperaturen und Drucke, die für die Anfangsbedingungen im Containment während des Störfalls repräsentativ sind. Besonderer Wert wird auf das Verstehen der Rolle der Dissoziierung und ihres Einflusses auf Gleichgewichtsdruck, Temperatur und Spezieskonzentration gelegt.


* Corresponding Author: E-mail:

References

1 The Fukushima Nuclear Accident Independent Investigation commission: https://www.nirs.org/fukushima/naiic_report.pdf (2012)Search in Google Scholar

2 Kuznetsov, M.; Yanez, J.; Grune, J.; Friedrich, A.; Jordan, T.: Hydrogen combustion in a flat semi-confined layer with respect to the Fukushima Daiichi Accident. Nuclear Engineering and Design Volume286 (2015) 3610.1016/j.nucengdes.2015.01.016Search in Google Scholar

3 Sherman, M. P.: Hydrogen combustion in nuclear plant accidents and associated containment loads. Nuclear Engineering and Design Volume 82 (1987) 1310.1016/0029-5493(84)90263-2Search in Google Scholar

4 AndersonJr., J. D.: Modern Compressible Flow, Third Edition, McGraw-Hill, New York, USA (2003)Search in Google Scholar

5 Kuo, K. K.: Principles of Combustion, Second Edition, John Wiley & Sons, Hoboken, USA (2005)Search in Google Scholar

6 ÓConaire, M.; Curran, H. J.; Simmie, J. M.; Pitz, W. J.; Westbrook, C. K: A comprehensive modeling study of hydrogen oxidation. International Journal of Chemical Kinetics Volume36 (2004) 60310.1002/kin.20036Search in Google Scholar

7 Hong, Z.; Davidson, D. F; Hanson, R. K: An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combustion and Flame Volume158 (2011) 63310.1016/j.combustflame.2010.10.002Search in Google Scholar

8 Burke, M. P.; Marcos, C.; Yiguang, J.; Dryer, F. L.; Klippenstein, S. J.: Comprehensive H2/O2 kinetic model for high-pressure combustion. International Journal of Chemical Kinetics Volume44 (2012) 44410.1002/kin.20603Search in Google Scholar

9 Carlos, H. M.; Luciano, K. A: Evaluation of Chemical Equilibrium and Non-Equilibrium Properties for LOX/LH2 Reaction Schemes. J. Aerosp. Technol. Manag.7 (2015) 3110.5028/jatm.v7i1.426Search in Google Scholar

10 Reynolds, W. C.: The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN. Technical report, Stanford University (1986)Search in Google Scholar

11 Gordon, S.; McBride, B. J.: Computer program for calculations of complex chemical equilibrium compositions, rocket performances, incident and reflected shocks, and Chapman-Jouguet detonations. Technical report, NASA Reference Publication 1311 (1994)Search in Google Scholar

12 Melham, G. A: A Detailed Method for Estimating Mixture Flammability Limits Using Chemical Equilibrium. Process Safety Progress16 (1997) 20310.1002/prs.680160403Search in Google Scholar

13 Fan, Y.; Crowl, D. A.: Predicting the Maximum Gas Deflagration Pressure over the Entire Flammable Range. Journal of Loss Prevention in the Process Industries13 (2000) 36110.1016/S0950-4230(99)00064-9Search in Google Scholar

14 Gang, T.; Crowl, D. A: Comparison of the maximum gas combustion pressure of hydrogen/oxygen/nitrogen-between chemical equilibrium calculations and experimental data. Proc. Int. Conf. The 9th Asia-Oceania Symposium on Fire Science and Technology, Procedia Engineering 62 (2013) 78610.1016/j.proeng.2013.08.126Search in Google Scholar

15 Cashdollar, K. L.; Zlochower, I. A.; Green, G. M.; Thomas, R. A.; Hertzberg, M: Flammability of Methane, Propane, Hydrogen Gases. Journal of Loss Prevention in the Process Industries13 (2000) 32710.1016/S0950-4230(99)00037-6Search in Google Scholar

16 Shroeder, V.; Holtappels, K.: Explosion characteristics of hydrogen-air and hydrogen-oxygen mixtures at elevated pressures. Proc. Int. Conf. International Conference on Hydrogen Safety (2011)Search in Google Scholar

17 Stamps, D.; Cooper, E.; Egbert, R.; Heerdink, S.; Stringer, V.: Pressure rise generated by expansion of a local gas volume in a closed vessel. Proc. R. Soc. A465 (2009) 362710.1098/rspa.2009.0140Search in Google Scholar

18 Boivin, P.; Dauptain, A.; Jiménez, C.; Cuenot, B.: Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry. Combustion and Flame159 (2012) 177910.1016/j.combustflame.2011.12.012Search in Google Scholar

19 Chase, M. W.: NIST-JANAF Thermochemical Tables, 4th Edition. Thermochemical Tables 2 Volume-Set (Journal of Physical and Chemical Reference Data Monographs) (1998)Search in Google Scholar

20 Goodwin, D. G.: Cantera User's Guide. California Institute of Technology, Pasadena, CA (2001)Search in Google Scholar

21 Turns, S.: An introduction to combustion, Third Edition, McGraw Hill, New Delhi, India (2012)Search in Google Scholar

Received: 2015-11-10
Published Online: 2016-12-08
Published in Print: 2016-12-16

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Technical Contributions/Fachbeiträge
  6. Use of molybdenum as a structural material of fuel elements for improving nuclear reactors safety
  7. Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code
  8. Spatial distribution of nanoparticles in PWR nanofluid coolant subjected to local nucleate boiling
  9. Impact of mesh points number on the accuracy of deterministic calculations of control rods worth for Tehran research reactor
  10. Dependence of neutron rate production with accelerator beam profile and energy range in an ADS-TRIGA RC1 reactor
  11. Effects of the wallpaper fuel design on the neutronic behavior of the HTR-10
  12. Loss of flow Accident (LOFA) analyses using LabView-based NRR simulator
  13. Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies
  14. Simulation of polycarbonate-CNT nanocomposite dosimeter based on electrical characteristics
  15. Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation
  16. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures
  17. Polynomial approach method to solve the neutron point kinetics equations with use of the analytic continuation
  18. The slab albedo problem for the triplet scattering kernel with modified FN method
  19. Calculation of the fuel composition and the deterministic reloading pattern in the second cycle of the BUSHEHR VVER-1000 reactor using the weighting factor method
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110589/html
Scroll to top button