Home Effects of the wallpaper fuel design on the neutronic behavior of the HTR-10
Article
Licensed
Unlicensed Requires Authentication

Effects of the wallpaper fuel design on the neutronic behavior of the HTR-10

  • S. A. Hosseini and M. Athari-Allaf
Published/Copyright: December 8, 2016
Become an author with De Gruyter Brill

Abstract

TRISO-wrapped fuel particle failure is a function of local temperature. The spherical symmetry and hence central temperature peak in PBM-type reactor fuel pebbles can lead to considerably higher failure rates at the center of the pebbles. The so-called “wallpaper fuel” concept has been shown to be a viable solution to this issue. In this paper, the neutronic aspects of this modification were studied using MCNP. According to the obtained results, the inclusion of a central fuel-free zone could lead to a more reactive system with lower actinide production while damping the temperature response of the reactor.

Kurzfassung

Der Bruch von TRISO-beschichteten Brennstoffpartikel ist eine Funktion der lokalen Temperatur. Die sphärische Symmetrie und damit der zentrale Temperaturpeak der Brennstoffkugeln vom Typ PBM kann zu erheblich höheren Bruchraten im Zentrum der Kugeln führen. Das Konzept des sogenannten „Tapeten“-Brennstoffdesign ist da eine praktikable Lösung. In diesem Beitrag wird das Neutronenverhalten dieser Modifikation mit Hilfe des MCNP-Codes untersucht. Die Ergebnisse zeigen, dass die Inklusion einer zentralen Brennstoff-freien Zone zu einem reaktiveren Systems führen könnte mit niedrigerer Aktiniden-Produktion und vermindertem Temperaturverhalten des Reaktors.


* E-mail:

References

1 Marmier, A.; Fütterer, M. A.; Tuček, K.; De Haas, H.; Kuijper, J. C.; Kloosterman, J. L.: Revisiting the concept of HTR wallpaper fuel. Nucl. Eng. Des.240 (2010) 2485249210.1016/j.nucengdes.2010.02.043Search in Google Scholar

2 Briestmesiter, J. F.: MCNP: A General Monte Carlo N-Particle Transport Code version 4C, JFBriestmeister ed, 2000Search in Google Scholar

3 Kunitomi, K.; Sun, Y.; Ball, S.; Brey, H. L.; Methnani, M.: Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to Initial Testing of the HTTR and HTR-10. Internaional Atomic Energy Agency, IAEA-TEDOC-1382, pp. 227322, 2003Search in Google Scholar

4 Hosseini, S. A.; Athari Allaf, M.: Pebble bed reactors simulation using MCNP: The Chinese HTR-10 reactor. Iran. J. Phys. Res.13 (2014) 177182Search in Google Scholar

5 Lebenhaft, J. R.: MCNP4B modeling of pebble-bed reactors. Massachusetts Institute of Technology, 2001Search in Google Scholar

6 Wang, M.-J.; Sheu, R.-J.; Peir, J.-J.; Liang, J.-H.: Criticality calculations of the HTR-10 pebble-bed reactor with SCALE6/CSAS6 and MCNP5. Ann. Nucl. Energy64 (2014) 1710.1016/j.anucene.2013.09.031Search in Google Scholar

7 Hosseini, S. A.: A new random distribution method to simulate PBM type reactors with MCNP. Ann. Nucl. Energy50 (2012) 21521910.1016/j.anucene.2012.07.024Search in Google Scholar

8 Kim, H.-C.; Kim, S. H.; Kim, J. K.: A new strategy to simulate a random geometry in a pebble-bed core with the Monte Carlo code MCNP. Ann. Nucl. Energy38 (2011) 1877188310.1016/j.anucene.2011.05.012Search in Google Scholar

9 Abedi, A.; Vosoughi, N.: Neutronic simulation of a pebble bed reactor considering its double heterogeneous nature. Nucl. Eng. Des.253 (2012) 27728410.1016/j.nucengdes.2012.08.030Search in Google Scholar

10 Lee, K. O.; Gardner, R. P.: Prediction of Pebble Motion in Pebble-Bed Reactors Using Monte Carlo Molecular Dynamics Simulation. Nucl. Sci. Eng.174 (2013) 26428510.13182/NSE12-23Search in Google Scholar

11 Williams, M. M. R.: The effect of random geometry on the criticality of a multiplying system. Ann. Nucl. Energy27 (2000) 14316810.1016/S0306-4549(99)00072-9Search in Google Scholar

12 Hosseini, S. A.; Athari Allaf, M.: Implementation and benchmarking of ENDFVII based library for PBM reactor analysis with MCNP4c. Prog. Nucl. Energy60 (2012) 273010.1016/j.pnucene.2012.05.001Search in Google Scholar

13 Lamarsh, J. R.; Baratta, A. J.: Introduction to nuclear engineering, Vol. 3. Prentice Hall Upper Saddle River, 2001Search in Google Scholar

Received: 2015-08-02
Published Online: 2016-12-08
Published in Print: 2016-12-16

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Technical Contributions/Fachbeiträge
  6. Use of molybdenum as a structural material of fuel elements for improving nuclear reactors safety
  7. Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code
  8. Spatial distribution of nanoparticles in PWR nanofluid coolant subjected to local nucleate boiling
  9. Impact of mesh points number on the accuracy of deterministic calculations of control rods worth for Tehran research reactor
  10. Dependence of neutron rate production with accelerator beam profile and energy range in an ADS-TRIGA RC1 reactor
  11. Effects of the wallpaper fuel design on the neutronic behavior of the HTR-10
  12. Loss of flow Accident (LOFA) analyses using LabView-based NRR simulator
  13. Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies
  14. Simulation of polycarbonate-CNT nanocomposite dosimeter based on electrical characteristics
  15. Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation
  16. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures
  17. Polynomial approach method to solve the neutron point kinetics equations with use of the analytic continuation
  18. The slab albedo problem for the triplet scattering kernel with modified FN method
  19. Calculation of the fuel composition and the deterministic reloading pattern in the second cycle of the BUSHEHR VVER-1000 reactor using the weighting factor method
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110564/html
Scroll to top button