Simulation of polycarbonate-CNT nanocomposite dosimeter based on electrical characteristics
-
S. Malekie
, F. Ziaie and M. Ataee Naeini
Abstract
In this research work, the electrical behavior of polycarbonate-carbon nanotube composite, over the radiation absorbed dose under a fixed DC voltage was investigated via finite element method. The predicted electrical percolation threshold value in the composite was validated by experimental results published by other scientists. The absorbed dose value was considered as multiplying of heat capacity and temperature rise of the composite, regarding the calorimetric approach. Results show that this kind of composite can be applied for monitoring and radiation protection utilizations.
Kurzfassung
In diesem Beitrag wird das elektrische Verhalten des Verbundwerkstoffs-Polykarbonat-Kohlenstoffnanoröhrchen über die Energiedosis unter einer festen DC-Spannung untersucht mit Hilfe der Finiten-Elemente-Methode. Der vorhergesagte Wert der elektrischen Perkolationsschwelle in dem Verbundwerkstoff wurde bestätigt durch experimentelle Ergebnisse anderer Autoren. Der Wert der Energiedosis wurde berücksichtigt als Multiplikation der Wärmekapazität und des Temperaturanstiegs des Verbundwerkstoffs im Hinblick auf den kalorimetrischen Ansatz. Die Ergebnisse zeigen, dass dieser Verbundwerkstoff für Strahlenschutzzwecke verwendet werden kann.
References
1 Malekie, S.; Ziaie, F.: Study on a novel dosimeter based on polyethylene–carbon nanotube composite. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment791 (2015) 1–510.1016/j.nima.2015.04.031Search in Google Scholar
2 Puch, F.; Hopmann, C.: Morphology and tensile properties of unreinforced and short carbon fibre reinforced Nylon 6/multiwalled carbon nanotube-composites. Polymer55 (2014) 3015–302510.1016/j.polymer.2014.04.052Search in Google Scholar
3 Moon, D.; Obrzut, J.; Douglas, J. F.; Lam, T.; Koziol, K.; Migler, K. B.: Three dimensional cluster distributions in processed multi-wall carbon nanotube polymer composites. Polymer55 (2014) 3270–327710.1016/j.polymer.2014.05.022Search in Google Scholar
4 Vennerberg, D.; Hall, R.; Kessler, M. R.: Supercritical carbon dioxide-assisted silanization of multi-walled carbon nanotubes and their effect on the thermo-mechanical properties of epoxy nanocomposites. Polymer55 (2014) 4156–416310.1016/j.polymer.2014.02.018Search in Google Scholar
5 Yamamoto, N.; Guzman de Villoria, R.; Wardle, B. L.: Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Composites Science and Technology72 (2012) 2009–201510.1016/j.compscitech.2012.09.006Search in Google Scholar
6 Gong, S.; Zhu, Z. H.; Meguid, S. A.; Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes. Polymer56 (2015) 498–50610.1016/j.polymer.2014.11.038Search in Google Scholar
7 Iijima, S.: Helical microtubules of graphitic carbon. Nature354 (1991) 56–5810.1038/354056a0Search in Google Scholar
8 Rieth, M.; Schommers, W.: Handbook of Theoretical and Computational Nanotechnology1 (2005)Search in Google Scholar
9 Maiti, S.; Shrivastava, N. K.; Suin, S.; Khatua, B. B.: A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC)/multiwall carbon nanotube (MWCNT) nanocomposites: Electrical and thermo-mechanical roperties. EXPRESS Polymer Letters7 (2013) 505–51810.3144/expresspolymlett.2013.47Search in Google Scholar
10 Al-Saleh, M. H.; Sundararaj, U.: A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon47 (2009) 10.1016/j.carbon.2008.09.039Search in Google Scholar
11 Stauffer, D.; Aharony, A.: Introduction to percolation theory. Second ed., Taylor & Francis, London, Washington, DC, 1992Search in Google Scholar
12 Ma, J.; Yeow, J.: Effect of percolation on electrical conductivity in a carbon nanotube-based film radiation sensor. IEEE, (2008) 10.1109/nano.2008.83Search in Google Scholar
13 McLachlan, D. S.; Sauti, G.: The AC and DC Conductivity of Nanocomposites. Nanomaterials, (2007) 10.1155/2007/30389Search in Google Scholar
14 Luo, S.: Processing-Structure-Property Relationships Of Carbon Nanotube And Nanoplatelet Enabled Piezoresistive Sensors. Florida State University, Electronic Theses, Treatises and Dissertations, Paper 7478, 201310.1016/j.carbon.2013.03.024Search in Google Scholar
15 Apsley, N.; Hughes, H. P.: Temperature- and field-dependence of hopping conduction in disordered systems. Philos. Mag.3 (1974) 96310.1080/14786437408207250Search in Google Scholar
16 Wintle, H. J.: Conduction Processes in Polymers, in: R.Bartnikas, R. M.Eichhorn (Eds.) Engineering Dielectrics. ASTM, Philadelphia, 1983, pp. 23910.1520/stp37838sSearch in Google Scholar
17 Owen, P.: Modelling a Calorimeter for High Dose Rate Brachytherapy. Department of Physics, University of Surrey, 2011, pp. 76Search in Google Scholar
18 Tavman, I.; Aydogdu, Y.; Kök, M.; Turgut, A.: Measurement of heat capacity and thermal conductivity of HDPE/expanded graphite nanocomposites by differential scanning calorimetry. Archives of Materials Science and Engineering50 (2011) 5Search in Google Scholar
19 Gaur, U.; Wunderlich, B.: Heat capacity and other thermodynamic properties of linear macromolecules.II. Polyethylene. J. Phys. Chem.10 (1981)10.1063/1.555636Search in Google Scholar
20 Callister, W. D.: Fundamentals of Materials Science and Engineering. fifth ed., John Wiley & Sons, Inc., The University of Utah, 2001Search in Google Scholar
21 Saavedra, M. S.: Novel Organic Based Nano-composite Detector Films: The Making and Testing of CNT Doped Poly(acrylate) Thin Films on Ceramic Chip Substrates. Department of Physics, University of Surrey, Guildford, Surrey, 2005, pp. 37Search in Google Scholar
22 Edwards, C.: Fundamental quantities and units for ionizing radiation. ICRU report 60, Medical Engineering & Physics, (1999) 10.1016/S1350-4533(99)00052-1Search in Google Scholar
23 Grossiord, N.; Loos, J.; Laake, L.v.; Maugey, M.; Zakri, C.; Koning, C. E.; Hart, A. J.: High-Conductivity Polymer Nanocomposites Obtained by Tailoring the Characteristics of Carbon Nanotube Fillers. Advanced Functional Materials18 (2008) 3226–323410.1002/adfm.200800528Search in Google Scholar
24 Ramasubramaniam, R.; Chen, J.; Liu, H.: Homogeneous carbon nanotube/polymer composites for electrical applications. Applied Physics Letters83 (2003) 2928–293010.1063/1.1616976Search in Google Scholar
25 Pötschke, P.; Hornbostel, B.; Roth, S.; Vohrer, U.; Dudkin, S. M.; Alig, I.: Purification and Percolation – Unexpected Phenomena in Nanotube Polymer Composites. AIP Conference Proceedings,786 (2005) 596–60110.1063/1.2103938Search in Google Scholar
26 Hornbostel, B.; Pötschke, P.; Kotz, J.; Roth, S.: Single-walled carbon nanotubes/polycarbonate composites: basic electrical and mechanical properties. physica status solidi (b)243 (2006) 3445–345110.1002/pssb.200669199Search in Google Scholar
27 Ziaie, F.; Borhani, M.; Mirjalili, G.; Bolourizadeh, M. A.: Effect of crystallinity on electrical properties of electron beam irradiated LDPE and HDPE. Radiation Physics and Chemistry76 (2007) 1684–168710.1016/j.radphyschem.2007.01.011Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Use of molybdenum as a structural material of fuel elements for improving nuclear reactors safety
- Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code
- Spatial distribution of nanoparticles in PWR nanofluid coolant subjected to local nucleate boiling
- Impact of mesh points number on the accuracy of deterministic calculations of control rods worth for Tehran research reactor
- Dependence of neutron rate production with accelerator beam profile and energy range in an ADS-TRIGA RC1 reactor
- Effects of the wallpaper fuel design on the neutronic behavior of the HTR-10
- Loss of flow Accident (LOFA) analyses using LabView-based NRR simulator
- Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies
- Simulation of polycarbonate-CNT nanocomposite dosimeter based on electrical characteristics
- Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation
- Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures
- Polynomial approach method to solve the neutron point kinetics equations with use of the analytic continuation
- The slab albedo problem for the triplet scattering kernel with modified FN method
- Calculation of the fuel composition and the deterministic reloading pattern in the second cycle of the BUSHEHR VVER-1000 reactor using the weighting factor method
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Use of molybdenum as a structural material of fuel elements for improving nuclear reactors safety
- Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code
- Spatial distribution of nanoparticles in PWR nanofluid coolant subjected to local nucleate boiling
- Impact of mesh points number on the accuracy of deterministic calculations of control rods worth for Tehran research reactor
- Dependence of neutron rate production with accelerator beam profile and energy range in an ADS-TRIGA RC1 reactor
- Effects of the wallpaper fuel design on the neutronic behavior of the HTR-10
- Loss of flow Accident (LOFA) analyses using LabView-based NRR simulator
- Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies
- Simulation of polycarbonate-CNT nanocomposite dosimeter based on electrical characteristics
- Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation
- Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures
- Polynomial approach method to solve the neutron point kinetics equations with use of the analytic continuation
- The slab albedo problem for the triplet scattering kernel with modified FN method
- Calculation of the fuel composition and the deterministic reloading pattern in the second cycle of the BUSHEHR VVER-1000 reactor using the weighting factor method