Startseite Technik Stability analysis of the Korean prototype Generation-IV sodium-cooled fast reactor using linear frequency domain approach
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stability analysis of the Korean prototype Generation-IV sodium-cooled fast reactor using linear frequency domain approach

  • S. J. Kim , P. N. V. Ha , J. Y. Lim , D. H. Hahn und C. M. Kang
Veröffentlicht/Copyright: 11. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Korea Atomic Energy Research Institute (KAERI) has been developing the 150 MWe Prototype Generation-IV Sodium-cooled Fast Reactor (PGSFR). The design concept is highly based on passive safety mechanisms, minimizing the need for engineered safety systems. Presently, it is of primary importance to assure the reactor dynamics and stability against small reactivity disturbances under power operating conditions. KAERI has therefore developed the NuSTAB code for stability analysis of the PGSFR. In NuSTAB, the neutron-kinetic and thermal-hydraulic coupling equations are linearized to form the characteristic equation, which is solved as a generalized eigenvalue problem for determining the decay ratio, an indicator of the system stability. In this paper, the stability of the PGSFR was analyzed by applying the point kinetic and spatial kinetic options in the NuSTAB code. System responses to temperature feedbacks including the Doppler effect, thermal expansion, coolant density change, and overall feedback were studied. The results indicate that the initial U and final TRU cores of the PGSFR are both inherently stable thanks to the temperature feedbacks.

Kurzfassung

Das koreanische Atomenergie-Forschungsinstitut (KAERI) hat einen 150 MWe-Prototyp eines Generation-IV-Natrium-gekühlten schnellen Reaktors (PGSFR) entwickelt. Das Designkonzept basiert hauptsächlich auf passiven Sicherheitsmechanismen. Derzeit ist es besonders wichtig die Dynamik und die Stabilität des Reaktors gegenüber kleinen Reaktivitätsstörungen während des Betriebs sicherzustellen. KAERI hat deshalb zur Stabilitätsanalyse des PGSFR den NuSTAB-Code entwickelt. Im NuSTAB-Code werden die Neutronen-kinetischen und thermo-hydraulischen Kopplungsgleichungen linearisiert um so die charakteristische Gleichung zu erhalten, die als verallgemeinertes Eigenwertproblem zur Bestimmung der Zerfallsrate, einem Indikator der Systemstabilität, behandelt wird. In diesem Beitrag wurde die Stabilität des PGSFR-Reaktors durch Anwendung punktkinetischer und räumlich-kinetischer Optionen im NuSTAB-Code analysiert. Die Systemantworten gegenüber Temperaturänderungen infolge des Dopplereffekts, thermischer Ausdehnung, Änderung der Kühlmitteldichte und das Gesamt-Feedback wurden untersucht. Die Ergebnisse zeigen, dass der anfängliche U-Kern und der endgültige TRU-Kern des PGSFR dank des Temperatur-Feedbacks inhärent stabil sind.


* Corresponding author: E-mail:

References

1 Brittan, R. O.: Some problems in the safety of fast reactor. ANL-5577, ANL, 195610.2172/4355722Suche in Google Scholar

2 Gialdi, E. et al.: Core stability in operating BWR: operational experience. Progress in Nuclear Energy15 (1985) 44745910.1016/0149-1970(85)90070-8Suche in Google Scholar

3 US NRC: Information notice No. 88–39: Lasalle unit 2 loss of recirculation pumps with power oscillation event, June 15, 1988Suche in Google Scholar

4 Sandmeier, A. H.: The kinetics and stability of fast rectors with special considerations of nonlinearities. Doctorate thesis, Swiss Federal Institute of Technology in Zurich, 195910.2172/4236954Suche in Google Scholar

5 Depiante, E. V.: Stability analysis of a liquid-metal rector and its primary heat transport system. Nuclear Engineering and Design152 (1994) 36137710.1016/0029-5493(94)90097-3Suche in Google Scholar

6 Bucys, K.; Svitra, D.: Modelling of nuclear reactors dynamics. Mathematical Modelling and Analysis4 (1999) 263210.3846/13926292.1999.9637107Suche in Google Scholar

7 Dokhane, A. et al.: Nonlinear stability analysis with novel BWR reduced order model. PHYSOR 2002, Seoul, Korea, October 7–10, 2002Suche in Google Scholar

8 Colombo, M. et al.: Transfer function modelling of the lead-cooled fast reactor (LFR) dynamics. Progress in Nuclear Energy52 (2010) 71572910.1016/j.pnucene.2010.04.007Suche in Google Scholar

9 Akcasu, K. et al.: Mathematical methods in nuclear reactor dynamics. Academic Press, New York, 1971Suche in Google Scholar

10 Munoz-Cobo, J. L. et al.: Non-linear analysis of out of phase oscillations in boiling water reactors. Annals of Nuclear Energy23 (1996) 1301133510.1016/0306-4549(96)00011-4Suche in Google Scholar

11 Karve, A. A.: Stability analysis of BWR nuclear-coupled thermal-hydraulics using a simple model. Nuclear Engineering and Design177 (1997) 15517710.1016/S0029-5493(97)00192-1Suche in Google Scholar

12 US NRC: RELAP5/MOD3.3 code manuals. Nuclear Safety Analysis Division, NUREG/CR-5535, 2001Suche in Google Scholar

13 Joo, H. G. et al.: PARCS: A multi-dimensional two-group reactor kinetics code based on the nonlinear analytic nodal method. PU/NE-98-26, Purdue University, 1998Suche in Google Scholar

14 Costa, A. L. et al.: Simulation of an hypothetical out-of-phase instability case in boiling water reactor by RELAP5/PARCS coupled codes. Annals of Nuclear Energy35 (2008) 94795710.1016/j.anucene.2007.08.019Suche in Google Scholar

15 US NRC: TRACE V5.0 Theory manual: Field equations, solution methods, and physical models. Division of Risk Assessment and Special Projects, 2007Suche in Google Scholar

16 Xu, Y. et al.: Application of TRACE/PARCS to BWR analysis. Annals of Nuclear Energy36 (2009) 31732310.1016/j.anucene.2008.12.022Suche in Google Scholar

17 Hanggi, P.: Investigating BWR stability with a new linear frequency-domain method and detailed 3D neutronics. Ph.D. thesis, Swiss Federal Institute of Technology, 2001Suche in Google Scholar

18 Tsai, S. H. et al.: A critical eigenvalues tracing method for the small signal stability analysis of power systems. Energy and Power Engineering5 (2013) 67768210.4236/epe.2013.54B131Suche in Google Scholar

19 Lindahl, S. O.: POLCA-Model description. ABB Report UR 86–192 Rev.4, 1986Suche in Google Scholar

20 Wulff, W. et al.: Description and assessment of RAMONA-3B Mod. 0 Cycle 4: a computer code with three dimensional neutron kinetics for BWR system transients. NUREG/CR-3664, 1984Suche in Google Scholar

21 Kang, C. M.: NuSTAB program manual. Internal Report, Korea Atomic Energy Research Institute, 2014Suche in Google Scholar

22 Chang, J.: Status of fast reactor technology development in Korea. The 45th IAEA TWG-FR Meeting, Beijing, China, June 20–22, 2012Suche in Google Scholar

23 Joo, H.: Status of fast reactor technology development in Korea. The 46th IAEA TWG-FR Meeting, Vienna, Austria, May 21–24, 2013Suche in Google Scholar

24 StaceyJr., W. M.: Space-time nuclear reactor kinetics. Academic Press, New York, 1960Suche in Google Scholar

25 Waltar, A. E. et al.: Fast spectrum reactors. Springer, 201110.1007/978-1-4419-9572-8Suche in Google Scholar

26 StaceyJr., W. M.: Variational flux synthesis methods for multigroup neutron diffusion theory. Nuclear Science and Engineering47 (1972) 44946910.13182/NSE72-A22436Suche in Google Scholar

27 Yasinsky, J. B.; Kaplan, S.: Synthesis of three-dimensional flux shapes using discontinuous sets of trial functions. Nuclear Science and Engineering28 (1972) 426437Suche in Google Scholar

28 Graham, J.: Fast reactor safety. Academic Press, New York and London, 1971Suche in Google Scholar

29 Tang, Y. S. et al.: Thermal analysis of liquid-metal fast breeder reactors. American Nuclear Society, 1978Suche in Google Scholar

30 Anderson, E. et al.: LAPACK user's guide. Third Edition, Society for Industrial and Applied Mathematics, 199910.1137/1.9780898719604Suche in Google Scholar

31 Kang, C. M.: NuSTAB verification and validation report. Internal Report, Korea Atomic Energy Research Institute, 2015Suche in Google Scholar

32 Lyapunov, A. M.: The general problem of the stability of motion. International Journal of Control55 (1992) 53177310.1080/00207179208934253Suche in Google Scholar

33 Ha, P. N. V. et al.: A point dynamic model for stability analysis of the PGSFR. Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 07–08, 2015Suche in Google Scholar

34 Kim, J. D.: KAFAX-E66. Calculation Note No. NDL-23/01, Nuclear Data Evaluation Laboratory Internal Report, Korea Atomic Energy Research Institute, 2001Suche in Google Scholar

35 Macfarlane, R. E.: TRANSX-2: A code for interfacing MATXS cross section libraries to nuclear transport codes. LA-12312-MS, LANL, 1993Suche in Google Scholar

36 Alcouffe, R. E. et al.: User's guide for TWODANT: a code package for two-dimensional, diffusion-accelerated, neutron transport. LA-10049-M, LANL, 1990Suche in Google Scholar

37 Lim, J. Y.: Private communication. Korea Atomic Energy Research Institute, 2015Suche in Google Scholar

38 Kim, S. K. et al.: Thermal properties evaluation of U-Zr and U-Zr-Ce Alloys. Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 22, 2009Suche in Google Scholar

39 Golden, G. H.; Tokar, J. V.: Thermo physical properties of sodium. ANL-7323, ANL, August 196710.2172/4511962Suche in Google Scholar

Received: 2015-11-16
Published Online: 2016-03-11
Published in Print: 2016-03-16

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110593/html
Button zum nach oben scrollen