Home Technology Protactinium-231 as a new fissionable material for nuclear reactors that can produce nuclear fuel with stable neutron-multiplying properties
Article
Licensed
Unlicensed Requires Authentication

Protactinium-231 as a new fissionable material for nuclear reactors that can produce nuclear fuel with stable neutron-multiplying properties

  • A. N. Shmelev , G. G. Kulikov , E. G. Kulikov and V. A. Apse
Published/Copyright: March 11, 2016
Become an author with De Gruyter Brill

Abstract

Main purpose of the study is justifying doping of protactinium-231 into fuel compositions of advanced nuclear reactors with the ultimate aim to improve their operation safety and economic efficiency. Protactinium-231 could be generated in thorium blankets of hybrid thermonuclear facilities. The following results were obtained: 1. Protactinium-231 has some favorable features for its doping into nuclear fuel; 2. Protactinium containing fuel compositions can be characterized by the higher values of fuel burn-up, the longer values of fuel lifetime and the better proliferation resistance; 3. as protactinium-231 is the stronger neutron absorber than uranium-238, remarkably lower amounts of protactinium-231 may be doped into fuel compositions. The free space could be occupied by materials which are able to improve heat conductivity and refractoriness of fuel. As a consequence, operation safety of nuclear reactors could be upgraded.

Kurzfassung

Hauptziel der Studie ist die Rechtfertigung des Einbringens von Protaktinium-231 in die Brennstoffzusammensetzung zukünftiger Kernreaktoren um so deren Betriebssicherheit und Wirtschaftlichkeit zu verbessern. Protaktinium-231 könnte im Thorium-Mantel von Fusions-Spalt-Hybridreaktoren erzeugt werden. Folgende Ergebnisse wurden erhalten: 1. Protaktinium-231 hat einige günstige Eigenschaften in Bezug auf sein Einbringen in den Kernbrennstoff. 2. Kernbrennstoff der Protaktinium enthält wird durch höheren Abbrand, längere Benutzungszeit im Kernreaktor und bessere Proliferationsresistenz charakterisiert; 3. Da Protaktinium-231 ein stärkerer Neutronenabsorber als Uran-238 ist, könnten deutlich geringere Mengen von Protaktinium-231 in den Kernbrennstoff eingebracht werden. Der Freiraum könnte mit solchen Materialien besetzt werden, die Wärmeleitfähigkeit und Feuerfestigkeit des Kernbrennstoffs verbessern. Als Folge davon würde sich die Sicherheit von Kernreaktoren verbessern.


* Corresponding author: E-mail:

References

1 Kuteev, B. V.; Khripunov, V. I.: Sovremenniy vzglyad na gibridniy termoyaderniy reactor. Voprosy atomnoy nauki i tekhniki, ser. Termoyaderniy sintez1 (2009) 329Search in Google Scholar

2 Weale, J. W.; Goodfellow, H.; McTaggart, M. H.; Mullender, M. L.: Measurements of reaction rate distribution produced by a source of 14-MeV neutrons at the center of a Uranium metal pile. Reactor Science and Technology (Journal of Nuclear Energy, Parts A and B)14 (1961) 9199Search in Google Scholar

3 Haight, R. C.; Lee, J. D.; Maniscalco, J. A.: Reaction Rates in a Uranium Pile Surrounding a 14 MeV Neutron Source: Calculations of the Weale Experiment. Nuclear Science and Engineering61 (1976) 535910.13182/NSE76-A28460Search in Google Scholar

4 Shief, H. E. J.; et al.: Measurements of the Reaction Rate Distributions Produced in a Large Thorium Cylinder by a Central Source of DT Neutrons. United Kingdom Atomic Energy Authority, AWRE 20/77, 1977Search in Google Scholar

5 Krumbein, A.; Lemanska, M.; Segev, M.; Wagschal, J. J.; Yaari, A.: Reaction rate calculations in Uranium and Thorium blankets surrounding a central Deuterium-Tritium neutron source. Nuclear Technology48 (1980) 11011610.13182/NT80-A32457Search in Google Scholar

6 Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salakhutdinov, G. Kh.; Kulikov, E. G.; Apse, V. A.: Gibridniy reaktor SINTEZ-DELENIE s torieviym blanketom. O ego potentciale v toplivnom tcikle yadernikh reaktorov. Voprosy atomnoy nauji i tekhniki, ser. Termoyaderniy sintez37, No. 2 (2014) 316Search in Google Scholar

7 Katc, D.; Soborg, G.; Mors, L.: Khimiya aktinoidov. Vol. 1, Mir, Moscow, 1991Search in Google Scholar

8 Pal'shin, E. S.; Myasoedov, B. F.; Davydov, A. V.: Analiticheskaya khimiya protaktiniya, Nauka, 1968Search in Google Scholar

9 Grigor'ev, I. S.; Meylikhov, E. Z.: Fizicheskie velichiny: Spravochnik. Energoatomizdat, Moscow, 1991Search in Google Scholar

10 Baranov, V. G.; Godin, Yu. G.; Tenishev, A. V.; Khlunov, A. V.; Novikov, V. V.: Fizicheskoe materialovedenie:Uchebnik dlya vuzov. Pod obschey red. Kalina B.A., Vol. 7, Yadernye toplivnye materialy, NRNU MEPhI, Moscow, 2012Search in Google Scholar

11 Information on http://www.himikatus.ru/art/phase-diagr1/Mo-U.php, http://www.himikatus.ru/art/phase-diagr1/Mo-Pa.phpSearch in Google Scholar

12 Shmelev, A. N.; Kulikov, G. G.; Kulikov, E. G.: Neytronno-fizicheskie osnovy yadernoy gibridnoy “SINTEZ-DELENIE” tekhnologii (uluchshennoe toplivoispol'zovanie v reaktornom yadernom toplivnom tcikle): Uchebnoe posobie, NRNU MEPhI, Moscow, 2014Search in Google Scholar

13 De Volpi, A.: Denaturing Fissile Materials. Progress in Nuclear Energy10, No. 2 (1982) 16122010.1016/0149-1970(82)90022-1Search in Google Scholar

Received: 2015-12-26
Published Online: 2016-03-11
Published in Print: 2016-03-16

© 2016, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110598/html
Scroll to top button