Home Technology Calculation of nuclear reactivity using the generalised Adams-Bashforth-Moulton predictor corrector method
Article
Licensed
Unlicensed Requires Authentication

Calculation of nuclear reactivity using the generalised Adams-Bashforth-Moulton predictor corrector method

  • D. Suescún-Díaz , M. Narváez-Paredes and J. H. Lozano-Parada
Published/Copyright: March 11, 2016
Become an author with De Gruyter Brill

Abstract

In this paper, the generalisation of the 4th-order Adams-Bashforth-Moulton predictor-corrector method is proposed to numerically solve the point kinetic equations of the nuclear reactivity calculations without using the nuclear power history. Due to the nature of the point kinetic equations, different predictor modifiers are used in order improve the precision of the approximations obtained. The results obtained with the prediction formulas and generalised corrections improve the precision when compared with previous methods and are valid for various forms of nuclear power and different time steps.

Kurzfassung

In diesem Beitrag wird vorgeschlagen, die generalisierte Adams-Bashforth-Moulton Prädiktor-Korrektor-Methode der 4. Ordnung für die numerische Lösung der punktkinetischen Gleichungen bei Reaktivitätsberechnungen zu verwenden. Wegen der Natur der punktkinetischen Gleichungen werden verschiedene Prädiktor-Modifier verwendet, um so die Genauigkeit der Näherungsverfahren zu erhöhen. Die mit den Prädiktor-Formeln und den generalisierten Korrektoren erhaltenen Ergebnisse verbessern die Genauigkeit verglichen mit vorhergehenden Methoden und sind gültig für verschiedene Formen der Kernenergie und verschiedene Zeitschritte.


* Corresponding author:

References

1 Ansari, S. A.: Development of on-line reactivity meter for nuclear reactors. IEEE Trans. Nucl. Sci.38 (1991) 94610.1109/23.83857Search in Google Scholar

2 Binney, S. E.; Bakir, A. I. M.: Design and development of a personal computer based reactivity meter for a nuclear reactor. Nucl. Technol.85 (1989) 1210.13182/NT89-A34223Search in Google Scholar

3 Hoogenboom, J. E.; Van Der Sluijs, A. R.: Neutron source strength determination for on-line reactivity measurements. Ann. Nucl. Energy15 (1988) 55310.1016/0306-4549(88)90059-XSearch in Google Scholar

4 Malmir, H.; Vosoughi, N.: On-line reactivity calculation using Lagrange method. Ann. Nucl. Energy62 (2013) 46310.1016/j.anucene.2013.07.006Search in Google Scholar

5 Shimazu, Y;, Nakano, Y.; Tahara, Y.; et al.: Development of a compact digital reactivity meter and reactor physics data processor. Nucl. Technol.77 (1987) 24710.13182/NT87-A33964Search in Google Scholar

6 Suescún, D. D.; Figueroa, J. J. H.; Rodríguez, S. J. A.: Reactivity calculation using the Euler Maclaurin formula. Ann. Nucl. Energ.53 (2013) 10410.1016/j.anucene.2012.09.026Search in Google Scholar

7 Tamura, S.: Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain. J. Nucl. Sci. Technol.40 (2003) 15310.1080/18811248.2003.9715345Search in Google Scholar

8 Suescún, D. D.; Flórez, O. J. F.; Rodriguez, S. J. A.: Hamming method for solving the delayed neutron precursor concentration for reactivity calculation. Ann. Nucl. Energy42 (2012) 4710.1016/j.anucene.2011.12.019Search in Google Scholar

9 Suescún, D. D.; Ibarguen, G. M. C.; Figueroa, J. J. H.: Hamming generalized corrector for reactivity calculation. Kerntechnik79 (2014) 21910.3139/124.110423Search in Google Scholar

10 Duderstadt, J. J.; Hamilton, L. J.: Nuclear reactor analysis. second ed., John Wiley & Sons Inc., New York, 1976Search in Google Scholar

Received: 2015-11-12
Published Online: 2016-03-11
Published in Print: 2016-03-16

© 2016, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110591/html
Scroll to top button