Calculation of nuclear reactivity using the generalised Adams-Bashforth-Moulton predictor corrector method
-
D. Suescún-Díaz
, M. Narváez-Paredes and J. H. Lozano-Parada
Abstract
In this paper, the generalisation of the 4th-order Adams-Bashforth-Moulton predictor-corrector method is proposed to numerically solve the point kinetic equations of the nuclear reactivity calculations without using the nuclear power history. Due to the nature of the point kinetic equations, different predictor modifiers are used in order improve the precision of the approximations obtained. The results obtained with the prediction formulas and generalised corrections improve the precision when compared with previous methods and are valid for various forms of nuclear power and different time steps.
Kurzfassung
In diesem Beitrag wird vorgeschlagen, die generalisierte Adams-Bashforth-Moulton Prädiktor-Korrektor-Methode der 4. Ordnung für die numerische Lösung der punktkinetischen Gleichungen bei Reaktivitätsberechnungen zu verwenden. Wegen der Natur der punktkinetischen Gleichungen werden verschiedene Prädiktor-Modifier verwendet, um so die Genauigkeit der Näherungsverfahren zu erhöhen. Die mit den Prädiktor-Formeln und den generalisierten Korrektoren erhaltenen Ergebnisse verbessern die Genauigkeit verglichen mit vorhergehenden Methoden und sind gültig für verschiedene Formen der Kernenergie und verschiedene Zeitschritte.
References
1 Ansari, S. A.: Development of on-line reactivity meter for nuclear reactors. IEEE Trans. Nucl. Sci.38 (1991) 94610.1109/23.83857Search in Google Scholar
2 Binney, S. E.; Bakir, A. I. M.: Design and development of a personal computer based reactivity meter for a nuclear reactor. Nucl. Technol.85 (1989) 1210.13182/NT89-A34223Search in Google Scholar
3 Hoogenboom, J. E.; Van Der Sluijs, A. R.: Neutron source strength determination for on-line reactivity measurements. Ann. Nucl. Energy15 (1988) 55310.1016/0306-4549(88)90059-XSearch in Google Scholar
4 Malmir, H.; Vosoughi, N.: On-line reactivity calculation using Lagrange method. Ann. Nucl. Energy62 (2013) 46310.1016/j.anucene.2013.07.006Search in Google Scholar
5 Shimazu, Y;, Nakano, Y.; Tahara, Y.; et al.: Development of a compact digital reactivity meter and reactor physics data processor. Nucl. Technol.77 (1987) 24710.13182/NT87-A33964Search in Google Scholar
6 Suescún, D. D.; Figueroa, J. J. H.; Rodríguez, S. J. A.: Reactivity calculation using the Euler Maclaurin formula. Ann. Nucl. Energ.53 (2013) 10410.1016/j.anucene.2012.09.026Search in Google Scholar
7 Tamura, S.: Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain. J. Nucl. Sci. Technol.40 (2003) 15310.1080/18811248.2003.9715345Search in Google Scholar
8 Suescún, D. D.; Flórez, O. J. F.; Rodriguez, S. J. A.: Hamming method for solving the delayed neutron precursor concentration for reactivity calculation. Ann. Nucl. Energy42 (2012) 4710.1016/j.anucene.2011.12.019Search in Google Scholar
9 Suescún, D. D.; Ibarguen, G. M. C.; Figueroa, J. J. H.: Hamming generalized corrector for reactivity calculation. Kerntechnik79 (2014) 21910.3139/124.110423Search in Google Scholar
10 Duderstadt, J. J.; Hamilton, L. J.: Nuclear reactor analysis. second ed., John Wiley & Sons Inc., New York, 1976Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Stability analysis of the Korean prototype Generation-IV sodium-cooled fast reactor using linear frequency domain approach
- Validation of RELAP5 model of experimental test rig simulating the natural convection in MTR research reactors
- Steady state and transient analyses of MNSR reactor using RELAP5 code
- Protactinium-231 as a new fissionable material for nuclear reactors that can produce nuclear fuel with stable neutron-multiplying properties
- Assessment of pin-by-pin fission rate distribution within MOX/UO2 fuel assembly using MCNPX code
- Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models
- Experimental and numerical investigation on natural convection heat transfer in nanofluids
- Experimental studies in a single-phase parallel channel natural circulation system: preliminary results
- Calculation of PDS-XADS core closed-loop transfer function by using feedback with the lumped-model
- Calculation of nuclear reactivity using the generalised Adams-Bashforth-Moulton predictor corrector method
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Stability analysis of the Korean prototype Generation-IV sodium-cooled fast reactor using linear frequency domain approach
- Validation of RELAP5 model of experimental test rig simulating the natural convection in MTR research reactors
- Steady state and transient analyses of MNSR reactor using RELAP5 code
- Protactinium-231 as a new fissionable material for nuclear reactors that can produce nuclear fuel with stable neutron-multiplying properties
- Assessment of pin-by-pin fission rate distribution within MOX/UO2 fuel assembly using MCNPX code
- Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models
- Experimental and numerical investigation on natural convection heat transfer in nanofluids
- Experimental studies in a single-phase parallel channel natural circulation system: preliminary results
- Calculation of PDS-XADS core closed-loop transfer function by using feedback with the lumped-model
- Calculation of nuclear reactivity using the generalised Adams-Bashforth-Moulton predictor corrector method