Home Technology Calculation of PDS-XADS core closed-loop transfer function by using feedback with the lumped-model
Article
Licensed
Unlicensed Requires Authentication

Calculation of PDS-XADS core closed-loop transfer function by using feedback with the lumped-model

  • A. Moghassem , A. Pazirandeh and A. Abbaspour
Published/Copyright: March 11, 2016
Become an author with De Gruyter Brill

Abstract

In this paper, the PDS-XADS LBE-cooled core open-loop transfer function was calculated by considering the source importance in point-kinetic equations. For this purpose, the overall-feedback transfer function was calculated considering the lumped-model for 14-steps of subcritical levels. Following effects were considered in three steps: 1. Doppler broadening, fuel expansion, coolant density and structure expansion, 2. Delayed-reactivity and void-worth inserted to prior step, 3. Severe-accident condition, inserted to prior steps. The linear stability analysis was modeled by using the Bode diagrams, Nyquist stability criterion and Nichols chart in MATLAB for each subcritical level and six groups of delayed neutrons. For optimized subcritical level determination, a conservative severe accident was considered. According to calculation results and analysis, the PDS-XADS core is stable and in optimized subcritical level, has the higher safety margin. The results are in good agreement with SIMMER-III code and main neutronic results. The optimized subcritical level by using the lumped-model is 0.97687.

Kurzfassung

In diesem Beitrag wurde die Übertragungsfunktion des offenen Regelkreises des LBE-gekühlten XADS Entwurfs mit Hilfe punktkinetischer Gleichungen berechnet. Dazu wurde die Feedback-Übertragungsfunktion mit Hilfe des Lumped-Parameter-Modells für 14 unterkritische Zustände berechnet. Folgende Effekte wurden betrachtet: 1. Dopplerverbreiterung, Dehnung des Brennstoffs, Kühlmitteldichte und Srukturdehnung, 2. verzögerte Reaktivität und Void-Wert, 3. schwere Störfälle. Die lineare Stabilitätsanalyse wurde in MATLAB modelliert mit Hilfe des Bode-Diagramms, des Stabilitätskriteriums von Nyquist und des Nichols Diagramms für jeden unterkritischen Zustand und sechs Gruppen verzögerter Neutronen. Für die Bestimmung optimierter unterkritischer Zustände wurde ein konservativer schwerer Störfall betrachtet. Aufgrund der Rechenergebnisse und der Analyse ist der Kern des PDS-XADS Konzepts stabil und hat in optimiertem unterkritischen Zustand die höheren Sicherheitsspannen. Die Ergebnisse stimmen gut überein mit Ergebnissen, die mit dem Simmer-III Code erhalten wurden. Der mit Hilfe des Lumped-Parameter-Modells bestimmte optimierte unterkritische Zustand liegt bei 0.97687.


* Corresponding author: E-mail:

References

1 A European Roadmap for Developing Accelerator Driven System (ADS) for Nuclear waste Incineration. ENEA, 2001Search in Google Scholar

2 AnsaldoNucleare: “XADS Pb-Bi Cooled Experimental Accelerator Driven System – Reference Configuration – Summary Report. ADS1SIFX0500, Rev.0, June 2001Search in Google Scholar

3 Cammi, A.; Luzzi, L.; Porta, A. A.; Ricotti, M. E.: Modelling and control strategy of the Italian LBE-XADS. Progress in Nuclear Energy48 (2006) 57858910.1016/j.pnucene.2006.03.006Search in Google Scholar

4 D'Angelo, A.; Gabrielli, F.: Benchmark on Beam Interruptions in an Accelerator Driven System. NEA/NSC/DOC 17, Issy-les-Molineaux, France, 2003Search in Google Scholar

5 Hainoun, A.; Khamis, I.; Saba, G.: Dynamic analysis of the closed loop transfer function in the miniature neutron source reactor (MNSR). Nuclear Engineering and Design (2004) A10.1016/j.nucengdes.2004.04.003Search in Google Scholar

6 Hitchcock, A.: Nuclear Reactor Stability. Temple Press, 1960Search in Google Scholar

7 Foster, A. R.; Wright, R. L.: Basic Nuclear Engineering. 1977Search in Google Scholar

8 Ash, M.: Nuclear Reactor Kinetics. McGraw-Hill Inc., 1979; Hainoun, A.: Simulation of MNSR – Power Response due to Step Insertion of Reactivity using the Computer Code PARET. In: Proceedings of fifth Arab Conference on the Peaceful Uses of Atomic Energy, Beirut, 13–17 November 2000Search in Google Scholar

9 Chen, X.-N.; Suzuki, T.; Rineiski, A.; Wiegner, E.; Maschek, W.; Flad, M.: Unprotected transients in a small-scale accelerator driven system. In: Proceedings of the International Topical Meeting on Nuclear Applications of Accelerator Technology (AccApp’03), San Diego, CA, USA, 1–5 June 2003Search in Google Scholar

10 Hetrick, D. L.: Dynamics of Nuclear Reactors, American Nuclear Society, 1993Search in Google Scholar

11 Golnaraghi, F; Kuo, B. C.: Automatic control systems, 2010Search in Google Scholar

12 Bianchi, F.; Artioli, C.; Burn, K. W.; Gherardi, G.; Monti, S.: Status and trend of core design activities for heavy metal cooled accelerator driven system. 12th International Conference on Emerging Nuclear Energy Systems (ICENES’2005) Brussels, Belgium, August 21–26, 2005Search in Google Scholar

13 Hazi, G.; Por, G.: On bias of transfer-function of numerical ordinary differential equation solvers in the frequency domain. Annals of Nuclear Energy26 (1999) 12211226. KFKI Atomic Energy Research Institute, Simulator Development Department, H-1525 Budapest, Hungary. Technical University of Budapest, Institute for Nuclear Techniques, H-1521 Budapest, Hungary10.1016/S0306-4549(99)00010-9Search in Google Scholar

14 Bell, G. I.; Glasstone, S.: Nuclear Reactor Theory, Van Nostrand Reinhold Company, 1970Search in Google Scholar

15 Hummel, H. H.; Okrent, D.: Reactivity Coefficients in Large Fast Power Reactors. American Nuclear Society, 1970Search in Google Scholar

16 Conde, H.: Introduction to ADS for Waste Incineration and Energy Production. Dept of Neutron Research, Uppsala University, Sweden, 2002Search in Google Scholar

17 Nifenecker, H.; David, S.; Loiseaux, J. M.; Meplan, O.: Basics of accelerator driven subcritical reactors, Nuclear Instruments and Methods in Physics Research A463, 2001, pg. 42846710.1016/S0168-9002(01)00160-7Search in Google Scholar

18 Ott, K. O.; Neuhold, R. J.: Nuclear Reactor Dynamics. ANS, La Grange Park, USA, 1985Search in Google Scholar

19 Duderstadt, J. J.; Hamilton, L. J.: Department of Nuclear Engineering. The University of MichiganAnn Arbor, Michigan, 1976Search in Google Scholar

20 Carlsson, J.; Wider, H. U.: Safety Aspects of Larger Heavy Metal-Cooled Accelerator Driven System, Joint Research Centre of the EC, Petten, 2003Search in Google Scholar

21 Burn, K. W.; Glinatsis, G.; Nava, E.; Petrovich, C.; Sarotto, M.: Preliminary nuclear design calculations for the PDSXADS LBE-cooled core. ENEA-FIS-NUC via Martiri di Monte Sole 4, 40129 Bologna, Italy. MANSANI Ansaldo Nucleare, Division of Ansaldo Energia SpA Corso Perrone 25, 16161 Genova, ItalySearch in Google Scholar

22 Cinotti, L.; Giraud, B.; Abderrahim, H.: The XADS Designs in the fifth FP, 2003Search in Google Scholar

23 Cinotti, L.; Gherardi, G.: The Pb-Bi cooled XADS status of development, Journal of Nuclear Materials301 (2002) 81410.1016/S0022-3115(01)00721-8Search in Google Scholar

24 Cinotti, L. et al.: Status of the Studies performed by the European Industry on the LBE cooled XADS, Proc. of International Workshop on P&T and ADS Development “InWor for P&T and ADS’2003”, ADOPT’03, October 6–8, 2003 (2003)Search in Google Scholar

25 Lewins;J.: Nuclear Reactor Kinetics and Control. Pergamon Press, Oxford, 1978Search in Google Scholar

26 Mansani, L.; Monti, R.; Neuhold, P.: Proposed sub-criticality level for an 80 MWth Lead-Bismuth-cooled ADS, Ansaldo Nuclear Division, Genova, Italy, 2002Search in Google Scholar

27 Todreas, N. E.; Kazimi, M. S.: Nuclear systems (Thermal hydraulic fundamentals). Massachusetts Institute of Technology, 2nd ed. Boca Raton, FL: CRC Press, 2012Search in Google Scholar

28 Coddington, P.; Mikityuk, K.; Schikorr, M.; Maschek, W.; Sehgal, R.; Champigny, J.; Mansani, L.; Meloni, P.; Wider, H.: Safety Analysis of the EU-PDS-XADS Designs. NEA workshop on HPPA, Daejeon, Korea, May 16–19, 2004Search in Google Scholar

29 Rubbia, R.; BuonoCarminati; Fietier;Galvez; Geles;Kadi; KlapischMandrillon; RevolRoche: Conceptual Design of a fast neutron operated energy amplifier, ERN/AT/95-44, 1995Search in Google Scholar

30 Pelloni, S.: Static analysis of the PDS-XADS LBE and gas-cooled concepts, Annals of Nuclear Energy32 (2005) 132810.1016/j.anucene.2004.08.004Search in Google Scholar

31 Schultz, M.: Control of Nuclear Reactors and Power Plants. McGraw-Hill Inc., 1961Search in Google Scholar

32 Suzuki, T.; Chen, X.-N.; Rineiski, A.; Maschek, W.: Transient analyses for accelerator driven system PDS-XADS using the extended SIMMER-III code. Nuclear Engineering and Design235 (2005) 2594261110.1016/j.nucengdes.2005.06.012Search in Google Scholar

33 Weston, M. S.: Georgia Institute of Technology: Nuclear Reactor Physics, 2001Search in Google Scholar

34 Schikorr, W. M.: Assessments of the kinetic and dynamic transient behavior of subcritical systems (ADS) in comparison to critical reactor systems. Nuclear Engineering and Design210, 200110.1016/S0029-5493(01)00431-9Search in Google Scholar

35 Kuang, Z.; Pazsit, I.; Ruhe, A.: Calculating reactor transfer function by Pade approximation via Lanczos algorithm. Annals of nuclear energy28 (2001) 1595161110.1016/S0306-4549(01)00009-3Search in Google Scholar

Received: 2015-07-24
Published Online: 2016-03-11
Published in Print: 2016-03-16

© 2016, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110561/html
Scroll to top button