Startseite Estimation of radiation damage of iron by a reactor gamma spectrum
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Estimation of radiation damage of iron by a reactor gamma spectrum

  • A. Tundwal und V. Kumar
Veröffentlicht/Copyright: 2. November 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Radiation damage of Iron by a gamma spectrum of a high flux isotope reactor is estimated using our JAIPU Monte Carlo code developed for the estimation of radiation damage by neutron and gamma radiation up to 10 MeV energy. The rate of displacement per atom is estimated to be ∼1.389E-10/sec at 30 cm radial distance in the HB-2 tube of the reactor. Production of displaced atoms is found to be an order of magnitude higher than the number of defects. Ratio of the rates of displacement per atoms by gammas to neutrons of the reactor deduced from calculations is found to be consistent with the earlier reported result.

Kurzfassung

Die Strahlenschädigung von Eisen durch Gammastrahlung eines Hochflussreaktors wurde mit Hilfe des JAIPU Monte Carlo Codes bestimmt, der entwickelt wurde für die Bestimmung der Strahlenschädigung durch Neutronen und Gammastrahlung bis zu einer Energie von 10 MeV. Die Verlagerungsrate pro Atom beträgt ∼1.389E-10/sec bei 30 cm radialem Abstand in der HB-2 Röhre des Reaktors. Die Erzeugung verlagerter Atome liegt eine Größenordnung höher als die Anzahl der Fehlstellen. Das aus den Berechnungen der Verlagerungsraten pro Atom durch Gammastrahlung gegenüber der durch Neutronen abgeleitete Verhältnis stellte sich als konsistent mit vorher berichteten Ergebnissen heraus.

References

1 Dienes, G. J.; Vineyard, G. H.: Radiation effects in solids. Interscience-New York, 1957Suche in Google Scholar

2 Baumann, N. P.: Gamma ray induced displacement in D2O reactors. 7th ASTM EURATOM Symposium on Reactor Dosimetry, Strasbourg, France, 27–31 August 1990Suche in Google Scholar

3 Alexander, D. E.; Rehn, L. E.: The contribution of high energy gamma rays to displacement damage in LWR pressure vessels. J. Nuclear Materials209 (1994) 2121010.1016/0022-3115(94)90297-6Suche in Google Scholar

4 Alexander, D. E.; Rehn, L. E.: Gamma-ray displacement damage in the pressure vessel of the advanced boiling water reactor. J. Nuclear Materials217 (1994) 2131010.1016/0022-3115(94)90325-5Suche in Google Scholar

5 Cheverton, R. D.; Merkle, J. G.; Nanstad, R. K.: Evaluation of HFIR pressure vessel integrity considering radiation embrittlement. Oak Ridge National laboratory report, ORNL TM-10444, April 198810.2172/5011291Suche in Google Scholar

6 Cuba, V.; Mucka, V.; Pospisil, M.: Radiation Induced Corrosion of Nuclear Fuel and Materials. www.intechopen.com and Mansur, L. K.; Farrell, K.: On mechanism by which a soft neutron spectrum may induce accelerated embrittlement. J. Nuclear Materials170 (1990) 236Suche in Google Scholar

7 Kilslitsin, S.; Ganeev, G.; NesterovaA.; Chumakov, E.: Investigation of shape changes of hexagonal ducts of spent fuel assemblies from the BN-350 fast neutron nuclear reactor (TM-36842). Vienna, 16–19 November 2009 (Reproduced by the International Atomic Energy Agency)Suche in Google Scholar

8 Remec, I.; Wang, J. A.; Kam, F. B.; Farrell, K.: Effects of gamma-induced displacements on HFIR pressure vessel materials. J. Nuclear Materials217 (1994) 2581010.1016/0022-3115(94)90375-1Suche in Google Scholar

9 Garner, F. A.; Greenwood, L. R.; Roy, P.: 18th International Symposium on Effects of Radiation on material (ASTM, STP 1325), Hyannis, 25–25 June, 1996, edited by Nansanstad, R. K.; Hamilton, M. L.; Garner, F. A.; Kumar, A. S.: (American society for testing and material, West Conshohocken, PA, 1999), p. 52Suche in Google Scholar

10 Bowman, C. D.; et al. : Nuclear Energy Generation and Waste Transmutation Using an Accelerator-Driven Intense Thermal Neutron Source. Nucl. Instrum. Methods A320 (1992) 3361010.1016/0168-9002(92)90795-6Suche in Google Scholar

11 Şahin, S.: Radiation damage studies on fusion reactors (TM-36842), Vienna, 16–19 November 2009 (Reproduced by the International Atomic Energy Agency)Suche in Google Scholar

12 SimakovS. P.; Fischer, U.: Displacement damage induced in iron by gammas and neutrons under irradiation in the IFMIF test cell. J. Nuclear Materials417 (2011) 13211010.1016/j.jnucmat.2010.12.175Suche in Google Scholar

13 FukoyaK.; Kimura, I.: Calculation of gamma induced displacement cross section of Iron considering positron contribution and using standard damage model. J. Nuclear. Sc. and Tech.40 (6) (2003) 4231010.1080/18811248.2003.9715375Suche in Google Scholar

14 Norgett, M. J.; Robinson, M. T.; Torrens, I. M.: A proposed method of calculating displacement dose rates. Nucl. Eng. Des.33 (1975) 501010.1016/0029-5493(75)90035-7Suche in Google Scholar

15 Fasso, A.; et al. : FLUKA realistic modelling of radiation induced damage. Prog. in Nucl. Sc. and Tech.2 (2011) 76910.15669/pnst.2.769Suche in Google Scholar

16 Kinchen, G. H.; Pease, R. S.: The displacement of atoms in solids by radiation, Rep. Prog. in Phys.18 (1955) 11010.1088/0034-4885/18/1/301Suche in Google Scholar

17 Kwon, J.; Motta, A. T.: Radiation Hardening in BWR core shrouds: relative role of neutron and gamma irradiation. Reactor dosimetry: Radiation metrology and assessment, ASTM STP 1398, 607 (2001)10.1520/STP13648SSuche in Google Scholar

18 Oen, O. S.: Cross Sections for Atomic Displacements in Solids by Fast Electrons. U.S.A.E.C. Report ORNL-4897, 197310.2172/4457758Suche in Google Scholar

19 Kumar, V.; Raghaw, N. S.; Palsania, H. S.: A Monte Carlo code for radiation damage by neutrons. Nuclear Science and Engg.172 (2012) 1511010.13182/NSE11-41Suche in Google Scholar

20 Tundwal, A.; Kumar, V.; Raghaw, N. S.: Monte Carlo simulation of radiation damage by gamma rays. IEEE Xplore, OI:10.1109/EPE.2014.6839457 (2014) 749 10.1109/EPE.2014.6839457Suche in Google Scholar

21 Broeders, C. H. M.; Konobeyev, A. YU.; Voukelatou, K.: IOTA- a code to study ion transport and radiation damage in composite materials, (2004) 1Suche in Google Scholar

22 Blosser, T. V.; Thomas, G. E.: Neutron flux and neutron and gamma spectrum measurements at the HFIR. Oak Ridge National laboratory report ORNL-TM-2221, June 1968 and Remec, I: Dosimetry in Mixed Neutron-Gamma Fields, ORNL/CP- 9696710.2172/4492768Suche in Google Scholar

23 ASTM E521–96 (2009) e1, Standard practice for neutron radiation damage simulation by charged particle radiation, annual book of ASTM standard Vol 12.02, American society of testing and material, Wes Conshohocken, PASuche in Google Scholar

24 Zarkadoula, E; Daraszewicz, S. L.; Duffy, D. M.; Seaton, M. A.; Todorov, I. T.; Nordlund, K.; Dove, M. T.; Trachenko, K.: The nature of high energy radiation damage in Iron. J. Physics: Condens Matter25 (2013) 1254021010.1088/0953-8984/25/12/125402Suche in Google Scholar PubMed

25 Warrier, M.; Valsakumar, M. C.: Large scale molecular dynamics simulations of collision cascades caused by primary knock-on atoms in Fe. Radiation Effects and Defects in Solids168 (2013) 6151010.1080/10420150.2013.792814Suche in Google Scholar

26 Blakeman, E. D.: Neutron and Gamma Fluxes and dpa Rates for HFIR Vessel Beltline Region (Present and Upgrade Designs), ORNL-TM-13693, 200010.2172/777683Suche in Google Scholar

27 Greenwood, L. R.; Ratner, R. T.: Neutron Dosimetry Calculations for the HFIR-JP-23 Irradiation, DOE/ER- 0313/24, 30 June 1998, p. 23110.2172/543303Suche in Google Scholar

Received: 2015-04-14
Published Online: 2015-11-02
Published in Print: 2015-10-29

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110540/html
Button zum nach oben scrollen