Home Technology Subchannel analysis of Al2O3 nanofluid as a coolant in VMHWR
Article
Licensed
Unlicensed Requires Authentication

Subchannel analysis of Al2O3 nanofluid as a coolant in VMHWR

  • E. Zarifi and S. Tashakor
Published/Copyright: November 2, 2015
Become an author with De Gruyter Brill

Abstract

The main objective of this study is to predict the thermal hydraulic behavior of nanofluids as the coolant in the fuel assembly of variable moderation high performance light water reactor (VMHWR). VMHWR is the new version of high performance light water reactor (HPLWR) conceptual design. Light water reactors at supercritical pressure (VMHWR, HPLWR), being currently under design, are the new generation of nuclear reactors. Water-based nanofluids containing various volume fractions of Al2O3 nanoparticles are analyzed. The conservation equations and conduction heat transfer equation for fuel and clad have been derived and discretized by the finite volume method. The transfer of mass, momentum and energy between adjacent subchannels are split into diversion crossflow and turbulent mixing components. The governed non linear algebraic equations are solved by using analytical iteration methods. Finally the nanofluid analysis results are compared with the pure water results.

Kurzfassung

Ziel dieser Untersuchungen ist die Vorhersage des thermohydraulischen Verhaltens von Nanofluiden als Kühlmittel in der Brennelementanordnung des Hochleistungsreaktors VMHWR. Der VMHWR ist eine neuere Version der HPLWR Konzeption. Leichtwasserreaktoren bei überkritischem Druck (VMHWR, HPLWR), sind eine neue Generation von Reaktoren. Nanofluide auf Wasser-Basis, die verschiedene Volumenanteile von Al2O3 Nanopartikeln enthalten, wurden analysiert. Konservative Gleichungen und Wärmeübertragungseigenschaften wurden für Brennelemente und Hülle abgeleitet und mit Hilfe der Finite- Volumen-Methode diskretisiert. Die Übertragung von Masse, Impuls und Energie zwischen benachbarten Unterkanälen wurde aufgeteilt in zwei Komponenten. Die maßgeblichen nicht-linearen algebraischen Gleichungen wurden gelöst mit Hilfe analytischer Iterationserfahren. Die Ergebnisse der Nanofluid-Analyse wurden verglichen mit den Ergebnissen für reines Wasser.


* Corresponding author:

References

1 Buongiorno, J.; Truong, B.: Preliminary study of water-based nanofluid coolants for PWRs. Trans. Am. Nucl. Soc.92 (2005) 383384Search in Google Scholar

2 Zarifi, E.; Jahanfarnia, G.: Subchannel analysis of TiO2 nanofluid as the coolant in VVER-1000 reactor. Progress in Nuclear Energy73 (2014) 1401521010.1016/j.pnucene.2014.02.004Search in Google Scholar

3 Zarifi, E.; Jahanfarnia, G.; Veisy, F.: Subchannel Analysis of Nanofluids Application to VVER-1000 Reactor. Chemical Engineering Research and Design91 (2013) 6256321010.1016/j.cherd.2013.01.018Search in Google Scholar

4 Zarifi, E.; Jahanfarnia, G.; Veisy, F.: Neutronic simulation of water-based Nanofluids as a Coolant in VVER-1000 Reactor. Progress in Nuclear Energy65 (2013) 32411010.1016/j.pnucene.2013.01.004Search in Google Scholar

5 Zarifi, E.; Jahanfarnia, G.; Veisy, F.: Thermal-hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach. Annals of Nuclear Energy, 51 (2013) 2032121010.1016/j.anucene.2012.07.041Search in Google Scholar

6 Zarifi, E.; Jahanfarnia, G.; Veisy, F.: Neutronic Analysis of Nanofluids as a Coolant in Bushehr VVER-1000 Reactor. Nukleonika52 (2012) 375381Search in Google Scholar

7 Nazififard, M.; Nematollahi, M.; Jafarpur, K.; Suh, Y.: Numerical Simulation of Water-Based Alumina Nanofluid in Subchannel Geometry. Science and Technology of Nuclear Installations928406 (2012)1121010.1155/2012/928406Search in Google Scholar

8 Hadad, K.; Hajizadeh, A.; Jafarpour, K.; Ganapo, B. D.: Neutronic study of nanofluids application to VVER-1000. Ann. Nucl. Energy37 (2010) 1447145510.1016/j.anucene.2010.06.02010.1016/j.anucene.2010.06.020Search in Google Scholar

9 Buongiorno, J.; Hu, L. W.; Apostolakis, G.; Hanninka, R.; Lucasa, T.; Chupin, A.: A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors. Nucl. Eng. Des.239 (2009) 9419481010.1016/j.nucengdes.2008.06.017Search in Google Scholar

10 Buongiorno, J.; Hu, L. W.; Kim, S. J.; Hannink, R.; Truong, B.; Forrest, E.: Nanofluids for enhanced economics and safety of nuclear reactors: An evaluation of the potential features, issues and research gaps. Nucl. Technol.162 (2008) 809110.13182/NT08-A3934Search in Google Scholar

11 Tashakor, S.; Salehi, A. A.; Jahanfarnia, G.; Abbaspour Tehrani Fard, A.: Variable moderation high performance light water reactor (VMHWR). Annals of Nuclear Energy50 (2013) 15Search in Google Scholar

12 Tashakor, S.; Salehi, A. A.; Jahanfarnia, G.; Abbaspour Tehrani Fard, A.: Thermal-hydraulic analysis of HPLWR fuel assembly cluster. The Journal of Supercritical Fluids77 (2013) 91991010.1016/j.supflu.2013.02.025Search in Google Scholar

13 Todreas, N. E.; Kazimi, M. S.: Nuclear system II, Elements of Thermal Hydraulic Design, Taylor & Francis, USA, 1990Search in Google Scholar

14 Velagapudi, V.; Konijeti, R. K.; Aduru, C.S.: Empirical correlation to predict thermo-physical and heat transfer characteristics of nanofluids. Thermal Science12 (2008) 27371010.2298/TSCI0802027VSearch in Google Scholar

15 Basile, D.; Beghi, M.; Chierici, R.; Salina, E.; Brega, E.: COBRA-EN, an updated version of the COBRA-3C/MIT code for thermal-hydraulic transient analysis of light water reactor fuel assemblies and cores. Report no. 1010/1, Italy, 1999Search in Google Scholar

16 Jang, S. P.; Choi, S. U. S.: Role of Brownian motion in the Enhanced Thermal Conductivity of Nanofluid. Applied Physic Letters84 (2004) 431643181010.1063/1.1756684Search in Google Scholar

17 Pak, B. C.; Cho, Y. I.: Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particle. Experimental Heat Transfer11 (1998) 1511701010.1080/08916159808946559Search in Google Scholar

18 Xuan, Y. M.; Li, Q.: Investigation on convective heattransfer and flow features of nanofluids. Journal of Heat transfer125 (2003) 1511551010.1115/1.1532008Search in Google Scholar

19 Markoczy, G.: Convective heat transfer in rod clusters with turbulent axial coolant flow. I. Mean value over the rod perimeter. Wärme- und Stoffübertragung5 (1972) 204Search in Google Scholar

20 Ainscough, J. B.: Gap conductance in zircaloy- clad LWR fuel rods. OECD nuclear energy agency, CSNI report no 72, 1982Search in Google Scholar

21 Koshizuka, S.; Oka, Y.: Computational Analysis of Deterioration Phenomena and Thermal-Hydraulic Design of SCR, Proc. SCR2000, Tokyo, 2000Search in Google Scholar

22 Kitoh, K.; Koshizuka, S.; Oka, Y.: Pressure and flow-induced accident and transient analyses of a direct-cycle, supercritical-pressure, light-water-cooled fast reactor. Nuclear Technology123 (1998) 23324410.13182/NT98-A2895Search in Google Scholar

Received: 2015-05-25
Published Online: 2015-11-02
Published in Print: 2015-10-29

© 2015, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110542/html
Scroll to top button