Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW
-
A. Arafa
Abstract
This paper illustrates the neutronic and thermal hydraulic models that were implemented in the nuclear research reactor simulator based on LabVIEW. It also describes the system and transient analysis of the simulator that takes into consideration the temperature effects and poisoning. This simulator is designed to be a multi-purpose in which the operator could understand the effects of the input parameters on the reactor. A designer can study different solutions for virtual reactor accident scenarios. The main features of the simulator are the flexibility to design and maintain the interface and the ability to redesign and remodel the reactor core engine. The developed reactor simulator permits to acquire hands-on the experience of the physics and technology of nuclear reactors including reactivity control, thermodynamics, technology design and safety system design. This simulator can be easily customizable and upgradable and new opportunities for collaboration between academic groups could be conducted.
Kurzfassung
In diesem Beitrag werden die neutronischen und thermohydraulischen Modelle, die im LabVIEW-basierten Simulator für Forschungsreaktoren implementiert wurden, vorgestellt. Das System und die Transientenanalyse des Simulators werden beschrieben. Dieser Simulator ist so zweckmäßig gestaltet, so dass der Reaktor-Betriebspersonal die Wirkung der Inputparameter auf das Reaktorverhalten gut verstehen kann. Auf diese Weise können verschiedene Lösungen virtueller Reaktorstörfallszenarien untersucht werden. Ein Hauptmerkmal des Simulators sind die flexiblen Ausgestaltungsmöglichkeiten und Modellierungen des Reaktors. Der Simulator ermöglicht es, Physik und Technologie des Reaktors einschließlich Reaktivitätskontrolle, Thermodynamik, Ausgestaltung technischer und Sicherheits-relevanter Aspekte durch praktische Erfahrung zu verstehen. Der Simulator lässt sich leicht anpassen und aufrüsten und kann so zur Verbesserung der Zusammenarbeit zwischen akademischen Gruppen beitragen.
References
1 Commission, U.S.N.R., RELAP5/MOD3. 3 Code manual, 1–8, by Information Services Laboratory Inc. Nuclear Safety Analysis Division, NUREG/CR-5535/Rev, 2002Suche in Google Scholar
2 Paulsen, M. P., et al. : RETRAN-3D: A Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems. User's Manual, NP-7450 (A), Revision, vol. 6, 2007. Available via web at http://www.epri.com/.Suche in Google Scholar
3 Spore, J. W., et al. : TRAC-M/Fortran 90 (Version 3.0) Theory Manual. 2001. Division of Systems Analysis and Regulatory Effectiveness. Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission. Available via web at http://www.nrc.gov/.Suche in Google Scholar
4 Chan, S.; Ryan, J.: Windows NT Simulation Platforms. Lessons Learned. Simulators International XIV. Society for Computer Simulation International. 1997Suche in Google Scholar
5 Po, L.-C. C.: Analysis of the rancho seco overcooling event using PCTRAN, the personal computer transient analyzer. Nuclear Science and Engineering98 (1988) 154–16110.13182/NSE88-A28495Suche in Google Scholar
6 Po, L.-C. C.: PC-based simulator PCTRAN for advanced nuclear power plants. In: Proceedings of the International Congress on Advances in Nuclear Power Plants-ICAPP'08, 2008Suche in Google Scholar
7 Lab VIEW: National Instruments, 2015Suche in Google Scholar
8 Jurčević, M.; Malarić, R.; Šala, A.: Web based platform for distance training on electrical measurements course. Measurement Science Review6 (2006) 36–39Suche in Google Scholar
9 White, J. R.: Resource for Nuclear Engineering Education. 2006. Available via web at http://nuclear101.com/.Suche in Google Scholar
10 Kim, K. D.; Rizwan, U.: A web-based nuclear simulator using RELAP5 and LabVIEW. Nuclear Engineering and Design237 (2007) 1185–11941010.1016/j.nucengdes.2007.01.004Suche in Google Scholar
11 Arafa, A.; Saleh, H. I.; Ashoub, N.: Development of an educational nuclear research reactor simulator. Kerntechnik79 (2014) 518–5271010.3139/124.110446Suche in Google Scholar
12 D'Auria, F; Bousbia-Salah, A.: Accident analysis in research reactors. In: Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, Sept. 10–13, 2007, p. 2021–2029Suche in Google Scholar
13 Anglart, H.: Nuclear Reactor Dynamics and Stability. KTH Royal Institute of Technology, 2011Suche in Google Scholar
14 Cacuci, D. G.: Handbook of Nuclear Engineering: Vol. 1: Nuclear Engineering Fundamentals; Vol. 2: Reactor Design; Vol. 3: Reactor Analysis; Vol. 4: Reactors of Generations III and IV; Vol. 5: Fuel Cycles, Decommissioning, Waste Disposal and Safeguards. Springer Science & Business Media, 2010Suche in Google Scholar
15 Lamarsh, J. R.; Baratta, A. J.: Introduction to nuclear engineering. Vol. 3, 2001, Prentice Hall Upper Saddle RiverSuche in Google Scholar
16 Gábor, A., et al. : Modeling and identification of a nuclear reactor with temperature effects and xenon poisoning. In: Industrial Electronics. IECON'09, 35th Annual Conference of IEEE, 2009 10.5414/ALP26095Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Theoretical study of steam condensation induced water hammer phenomena in horizontal pipelines
- Estimation of experimental uncertainty for physical measurements based on the start-up data of the latest VVER-1000 units
- Analysis of SBO ATWS for Maanshan PWR
- Subchannel analysis of Al2O3 nanofluid as a coolant in VMHWR
- The neutronic calculations for some fluids, libraries and structural materials in a hybrid reactor system
- Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW
- International assessment of application of the Code of Conduct on the Safety of Research Reactors
- 15 MeV proton irradiation effects on Bi-based high temperature superconductors
- Estimation of radiation damage of iron by a reactor gamma spectrum
- Measuring U concentration in solution product of UF6 hydrolysis using a gamma ray densitometer
- Sensitivity analysis of parameters important to nuclear criticality safety of Castor X/28F spent nuclear fuel cask
- Application of UN method to neutron transport equation in slab geometry using HG phase function
- Preparation of human resources for future nuclear energy using FBNR as the instrument of learning
- Technical Note
- Interface network groups
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Theoretical study of steam condensation induced water hammer phenomena in horizontal pipelines
- Estimation of experimental uncertainty for physical measurements based on the start-up data of the latest VVER-1000 units
- Analysis of SBO ATWS for Maanshan PWR
- Subchannel analysis of Al2O3 nanofluid as a coolant in VMHWR
- The neutronic calculations for some fluids, libraries and structural materials in a hybrid reactor system
- Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW
- International assessment of application of the Code of Conduct on the Safety of Research Reactors
- 15 MeV proton irradiation effects on Bi-based high temperature superconductors
- Estimation of radiation damage of iron by a reactor gamma spectrum
- Measuring U concentration in solution product of UF6 hydrolysis using a gamma ray densitometer
- Sensitivity analysis of parameters important to nuclear criticality safety of Castor X/28F spent nuclear fuel cask
- Application of UN method to neutron transport equation in slab geometry using HG phase function
- Preparation of human resources for future nuclear energy using FBNR as the instrument of learning
- Technical Note
- Interface network groups