Home Technology Sensitivity analysis of parameters important to nuclear criticality safety of Castor X/28F spent nuclear fuel cask
Article
Licensed
Unlicensed Requires Authentication

Sensitivity analysis of parameters important to nuclear criticality safety of Castor X/28F spent nuclear fuel cask

  • M.J. Leotlela , I. Malgas and E. Taviv
Published/Copyright: November 2, 2015
Become an author with De Gruyter Brill

Abstract

In nuclear criticality safety analysis it is essential to ascertain how various components of the nuclear system will perform under certain conditions they may be subjected to, particularly if the components of the system are likely to be affected by environmental factors such as temperature, radiation or material composition. It is therefore prudent that a sensitivity analysis is performed to determine and quantify the response of the output to variation in any of the input parameters. In a fissile system, the output parameter of importance is the keff. Therefore, in attempting to prevent reactivity-induced accidents, it is important for the criticality safety analyst to have a quantified degree of response for the neutron multiplication factor to perturbation in a given input parameter. This article will present the results of the perturbation of the parameters that are important to nuclear criticality safety analysis and their respective correlation equations for deriving the sensitivity coefficients.

Kurzfassung

Bei der Kritikalitätssicherheitsanalyse wird festgestellt, wie sich verschiedene Komponenten des nuklearen Systems unter gewissen Bedingungen verhalten, insbesondere wenn die Systemkomponenten durch Umweltfaktoren beeinflusst werden können, wie z.B. Temperatur, Strahlung oder Materialzusammensetzung. Mit Hilfe einer Sensitivitätsanalyse sollten deshalb Rückmeldungen auf Schwankungen der Eingangsparameter quantifiziert werden können. In einer spaltfähigen Anordnung ist der Ausgangsparameter keff von besonderer Bedeutung. Zur Vermeidung reaktivitätsinduzierter Unfälle muss das Verhalten des Neutronenmultiplikationsfaktors gegenüber einer Störung in einem gegebenen Eingangsparameter quantitativ bekannt sein. Dieser Beitrag präsentiert die Ergebnisse von Störungen der Parameter, die für die Kritikalitätsanalyse wichtig sind und ihre entsprechenden Korrelationsgleichungen zur Ableitung der Sensitivitätskoeffizienten.


* corresponding author:

References

1 Rearden, B. T.: Pertubation Theory Eigenvalues Sensitivity Analysis with Monte Carlo Techniques. Nuclear Science and Engineering146 (2004) 3673821010.13182/NSE03-03Search in Google Scholar

2 Rearden, B. T.; Mueller, D. E.: Recent use of Covariance Data for Criticality Safety Assessment. Oak Ridge: Elevier, 2008, Vols. Nuclear Data sheets109 (2008) 27392741010.1016/j.nds.2008.11.003Search in Google Scholar

3 Mueller, D. E.: Precursor of Major Actinides. Personal correspondence.114, 2013a.Search in Google Scholar

4 Leotlela, M. J.; Mueller, D. E.; Taviv, E.; Petr, I.; Carter, I.: The effects of storage patterns on the neutron multiplication factor of spent nuclear fuel casks. Johannesburg: International Nuclear Safety Journal1 (2012) 715, ISSN 2285–8717Search in Google Scholar

5 Broadhead, B. L.; Rearden, B. T.; Hopper, C. M.; Wagschal, J. J.; Parks, C. V.: Sensitivity and Uncertainty-based Criticality Safety Validation Techniques. Nuclear Science and Engineering146 (2004) 3403661010.13182/NSE03-2Search in Google Scholar

6 Gauld, I. C.; Mueller, D. E.: Evaluation of cross-section sensitivities in computing burnup credit fission product concentration. Oak Ridge National Laboratory, 200510.2172/885988Search in Google Scholar

7 Mueller, D. E.; Rearden, B. T.: Sensitivity coefficient generation for a Burnup Credit Cask Model using TSUNAMI-3D. Knoxville, Tennessee, American Nuclear Society, LaGrange Park, IL, 2005Search in Google Scholar

8 Duderstadt, J. J.; Hamilton, L. J.: Nuclear Reactor Analysis. Ann Arbor, John Wiley & Sons, 1976, ISBN 0-471-22363-8Search in Google Scholar

9 Lamarsh, J. R.: Introduction to nuclear reactor theory. Amercan Nuclear Society, 2002Search in Google Scholar

10 Wagner, J. C.: Computational Benchmark for estimation of reactivity margin from fission products and minor actinides in PWR burnup credit. Oak Ridge National Laboratory, 2001, NUREG/CR-6747 10.2172/814059Search in Google Scholar

11 Wagner, J. C.; Sanders, E.: Assessment of reactivity margin and loading curves for PWR burnup credit cask designs. Oak Ridge National Laboratory, 2003. NUREG/CR-680010.2172/885673Search in Google Scholar

12 Radulescu, G.; Gauld, I. C.: STARBUCS: A SCALE control module for automated criticality safety analyses using burnup credit. Oak Ridge, Tennessee: Oak Ridge National Laboratory, 2009, ORNL/TM-2005/39Search in Google Scholar

13 Matzke, H.: On the rim effect in high burnup UO2 LWR fuels. Karlsruhe, Journal of nuclear materials. Vols.189 (1992) 1411481010.1016/0022-3115(92)90428-NSearch in Google Scholar

14 International Atomic Energy Agency. Technical and Economic limits for fuel burnup extention. San Carlos de Bariloche, Argentina, International Atomic Energy Agency, 1999. IAEA-Tecdoc 1299Search in Google Scholar

15 Mueller, D. E.; Gauld, I. C.: Evaluation of Cross-Section Sensitivity in Computing Burnup Credit Fission Product Concentration. Oak Ridge National Laboratory, 2005, ORNL/TM-2005/48.Search in Google Scholar

16 Leotlela, M. J.: Investigation of the release of gaseous fission products from Pebbled Bed Modular Reactor's TRISO coated Fuel Particle during the HFR-K5 fuell Irradiation. School of Physics, University of the Witwatersrand, Johannesburg, 2010. Research Report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in partial fulfillment of the requirements for the degree of Master of ScienceSearch in Google Scholar

17 ORNL. Presentation on Direct Perturbation Calculations. Oak Ridge, 2011Search in Google Scholar

18 Finney, R. L.; George B.Thomas, Jr.: Calculus. Massachusetts, Addison-Wesley, 1990, ISBN 0-201-52579-8Search in Google Scholar

19 Lewis, E. E.: Fundamentals of Nuclear Reactor Physics. London, Academic Press, 2008, ISBN: 978-0-12-370631-7.Search in Google Scholar

20 Wagner, J. C.; DeHart, M. D.: Review of axial burnup distribution considerations for Burnup Credit Calculation. Oak Ridge National Laboratory, 2000. ORNL/TM-1999/246 10.2172/763169Search in Google Scholar

Received: 2015-04-17
Published Online: 2015-11-02
Published in Print: 2015-10-29

© 2015, Carl Hanser Verlag, München

Downloaded on 14.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/124.110541/html
Scroll to top button